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Resumen

En este trabajo de fin de grado se presenta una introducción teórica breve sobre los amplificadores de
potencia y sus no linealidades, así como la implementación del algoritmo Hill Climbing aplicado al

modelado de comportamiento basado en series de Volterra de los amplificadores de potencia. A continuación,
se presentan una serie de experimentos con el objetivo de estudiar las virtudes y los defectos de este tipo de
algoritmo de búsqueda exhaustiva. Para los experimentos, se han utilizado muestras de señales 4G-LTE y
5G-NR, así como amplificadores operando entre -30 y -20 dBm.
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Abstract

In this final degree work, a brief theoretical introduction about power amplifiers and their non-linearities
followed by an implementation of the Hill Climbing algorithm applied to the behavioral modeling based

on Volterra series of power amplifiers are presented. Some experiments aiming at studying the strength and
weaknesses of this type of exhaustive search algorithm are also presented. For the experiments, 4G-LTE and
5G-NR samples, as well as amplifiers operating in the range of -30 to -20 dBm, have been used.
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1 Introduction

To accept anything on trust, to preclude critical application and
development, is a grievous sin; and in order to apply and develop,
simple interpretation is obviously not enough.

Vladimir Ilyich Ulyanov

The rapid development of wireless communications has bring the necessity of new more-exquisitely de-
signed devices which must be usually smaller and thinner but also must work with more complex modulations,
shorter time responses and, of course, cheaper. Cellular coverage has also been required to be wider and
access points to be invisible. The rising awareness about climate change has also put mobile communications
in the spotlight: wireless communications must be energy efficient.

Power amplifiers (PAs) are responsible for a big part of the power consumption of wireless devices. They
are active devices, so they require a power supply to function. They are present in cellular base stations,
radars, planes, radio and television broadcast, sensor networks, audio players, etc. PAs are usually two-port
devices which transfer an input signal from the input port to the output port increasing the signal amplitude.
The difference between the output and the input signal amplitude is denoted as gain.

How efficiently amplifiers deliver this gain is key to reduce the energy waste in telecommunications. PAs
are more efficient when they are put to work where the output power is close to the maximum supply power.
This is known as the saturation zone, after which its behavior becomes nearly unpredictable and no higher
output power is obtained. Part of the energy consumed by PAs will be transformed into heat escaping the
enclosure of the apparatus. Some also will amplify non-fundamental spectrums of the input signal which
may be undesired. PAs should operate linearly depending on the power it is supplied with, but this leakage of
power is considered non-linear.
Progress in modulation techniques has brought new schemes such as Orthogonal Frequency Division

Multiplexing (OFDM) which are featured by a high peak-to-average power ratio (PAPR). This magnitude is
defined as the peak power of the modulated signal to the average power of the modulated signal. Signals
with a constant envelope have a zero PAPR and are inmune to non-linear distortion, higher-than-zero PAPR
increases the signal sensitivity to it [1].
Digital pre-distortion (DPD), crest factor reduction (CFR), envelope tracking (ET) and many other tech-

niques are used to mitigate the PAPR as well as correct other non-linearities. The key of the DPD solution
is the dynamic identification of the PA behavior and the consequent development of a PA model which
resumes the nonlinear effects produced by the components of the amplifier such as nonlinear reactances in its
transistors or charge storaged in its capacitors.

The relationship between the input and output signals is used to build a behavioral model that not necessarily
need to be related to the physical phenomena that take place inside the system. Thus, this mainly exclusive
mathematical relationship can result in a relatively simple model through techniques such as data-fitting.
Fitting is one of the key activities in modeling and consists on finding the parameters of a function to

represent the data. For behavioral modeling, the physical relationship between inputs and outputs may
not be needed. Polynomial functions can be adjusted in order to obtain acceptable-accuracy models. This
polynomial it is achieved through error minimization, usually considering error the difference of distance
between the data and the function result. These models can be very successfully created with relatively few
parameters.

1



2 Chapter 1. Introduction

There are other computational models such as neural networks (NN), which have become very popular in
the last few years due to the belief which says NN can approximate any nonlinear function. These machine-
learning networks are groups of linear functions or neurons with common weighted inputs which output
passes through a nonlinear function called activation function that modifies it, so it does not exceed certain
thresholds. These networks can improve their performance thanks to a loss function and backforwarding,
which evaluate and steadily correct the neurons coefficients during machine fitting. These neurons can be
joint into layers put one after the other, usually smoothing the approximation of the objective function.

Another type of computational models very popular these days are genetic algorithms (GAs). GAs are also
part of the machine-learning family of algorithms. They start calculating the fitness of a initial population of
model solutions, randomly or partially randomly generated, running a selection of only the fittest models and
generating a new population or generation by recombining the original fittest models or parents. This process
shall repeat until the local optimum is found. As these algorithms are based on Darwin’s theory of evolution,
mutations are considered during the generation of every population. Mutation and recombination make the
algorithm strong against premature convergence or plateauing, showing diversity as the best way to find the
best solution.
The simulator that will be used in this final degree work will be MATLAB, a well-known numerical

computing environment with his own programming language and available for numerous operating systems.
It is a common tool used in the practical lessons of Seville’s Engineering School and in its B.Sc. in
Telecommunication Engineering.

Chapter 2 offers a brief state-of-the-art review about PAs and their non-linear behavior and Chapter 3 comes
after the implementation of the Hill Climbing Heuristic presented in [2] and contains different experiments
and analysis about this algorithm. Chapter 4 includes all the scripts of the implementation of the algorithm.
Finally, Chapter 5 shows the conclusions and future lines of research this work could continue with and
Chapter 6 holds the MatLab code which were needed for this work.



2 Nonlinearities in Power Amplifiers

To be radical is to grasp things by the root.

Karl Marx

Power amplifiers are electronic devices used to increase the magnitude voltage, current or power. In
communications, the job of radio frequency (RF) PAs is to boost the modulated level so that the receiver

is capable to detect the signal level. PAs must be capable of delivering a big amount of power to a load
without losing efficiency while taking low-power input signal to a high-power output signal.

Amplifier designs in general are usually simple adaptations from linear system designs, but we must
differentiate between small and large-signal amplifiers. Power amplifiers (PAs) are large-signal amplifiers
that work with higher output power levels than small-signal ones. Small-signal approximations are generally
not appropriate for the PAs [3, p. 551].

2.1 Efficiency is money

Efficiency is clearly one of our top priorities in order to design a PA. It is now time to learn more about these
devices which have the leading role of this final degree work. PAs have been classified along the years. The
alphabetical classification has been used for nearly a century back to the early ages of electronics [4, p. 159].
The most common classes will be described later in this work.

2.2 Class A-to-F PAs

Before describing the different classes of amplifiers, a short explanation about the operation modes of the
amplifiers must be given. PAs can generally work in three different modes as follows: linear mode, when
operating in a highly linear portion of their static characteristic curve; critical mode, when current ceases to
flow but operation extends beyond the linear portion up to the saturation and cutoff regions; and non-linear
mode, when current ceases to flow during a portion of each cycle [5, p. 4]. PA transistors must be provided
with enough dc voltage, so it is maintained in the active region, where it works as an amplifier. This is
the biasing condition. Modern communication systems perform at the edge of the linear portion of their
characteristic curve, PA architectures must make sure maximum peak power is in range of this region and
manage the impact this will have in efficiency [6, p. 7].
This classification starts with the Class A amplifier. This device is strongly linear when operating in the

exact mid-point between the saturation and cutoff regions [7, p. 18]. However, this is essentially for smaller
signal amplitudes, having only an energy efficiency of 50% at peak power and being considered too inefficient
for cellular wireless communications. Class B amplifiers are widely used because of their low standby dc
current requirements. A Class B PA transistor only conducts over half the period of the input signal, so two
are used to entirely amplify the input signal [3, p. 535]. They still only have a maximum efficiency of about
78.6% and a very high biasing voltage. Class B PAs are also common for showing a type of distortion called
crossover distortion, which bring non-linearities to the output. Class AB amplifiers are halfway between
Class A and B amplifiers, with a low bias condition as in Class A but conducting only half-cycle like in Class
B amplifiers. Theoretical efficiency can be over 70%. Class C is a high efficiency, low gain Class B amplifier

3



4 Chapter 2. Nonlinearities in Power Amplifiers

which presented no problem with distortions on constant envelope signals such as FM transmissions. Class
D, E and F amplifiers, also denoted as switching amplifiers, are more efficient than the previous classes. They
get close to 100% with the correct configuration, although they are strongly affected by harmonics. This
problem requires of an effective tuning to avoid significant power losses. These amplifiers need to work close
to the maximum output power to provide with the peak efficiency, and still they will be vulnerable to power
back-offs [8, pp. 21-31]. A diagram which compares the main classes of amplifiers from A to T is in Figure
2.1.

Figure 2.1 Comparison of the main classes of amplifiers [9].

2.3 More complex architectures

After shortly reviewing the main classes of amplifiers, it is evident that high efficiency comes at the prices of
complexity. These will make difficult the task of the PA designer. More complex architectures or techniques
are needed to ensure that our RF PA efficiency is high. Architectures and efficiency enhancement techniques
excel among many and they will be explained briefly below:

2.3.1 Doherty PA

The Doherty PA (Figure 2.2) was proposed in the 1935 with the purpose of maintaining high efficiency over
a wide range of input voltage of a linear power amplifier. It is built out of 2 amplifiers, one main power
amplifier and an auxiliary power amplifier. The first one saturates at high input power losing gain, so that the
second one switches on when this occurs. This makes possible that the amplifier is still efficient even 6-8 dB
from the peak output power [7, p. 291] [8, p. 33] [10, p. 333].

2.3.2 Envelope Tracking

Envelope tracking technique goal is the same as for the Doherty PA. It works as a type of envelope elimination
and restoration technique, although without a limiter amplifier. It consists of two paths: one has an envelope

Figure 2.2 Doherty PA block diagram [8].
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Figure 2.3 Block diagram of a PA with envelope tracking [10].

detector and a dc-dc switching-mode power converter, the other one has one delay block and a linear amplifier
(Figure 2.3). The envelope detector obtains the amplitude modulation voltage out of the input voltage, and
with the dc-dc converter this voltage is used to adjust the level of supply voltage of the linear amplifier. The
efficiency of the amplifier increases with the envelope magnitude, so driving it into compression gives the
highest efficiency. [7, pp. 311-314] [8, p. 36] [10, pp. 330-333].

2.4 Nonlinearities

After achieving high-efficiency devices, PAs still present some deficiencies which need to be handled somehow.
This efficiency comes at the cost of operating in compression or even in saturation, which are very nonlinear
regimes. That will lead to harmonic distortion, intermodulation products and the consequent power leakage.
This happens because, even using linear or small-signal approximations, the physical components of the PA
are not linear themselves: there will always be some level of distortion [8, p. 112].

2.4.1 1dB-compression point

The 1dB-compression point marks the beginning of the nonlinear operation region, as it is where the measured
output power of a PA differs one decibel from the theoretical, linear and desired behavior. That nonlinear
behavior is also known as amplitude modulation to amplitude modulation (AM-to-AM) conversion: as a
modulation of the input signal nonlinearly modulates the output signal. Additionally, an amplitude modulation
to phase modulation (AM-to-PM) conversion will occur: the input components of the amplifier start to show
drive dependency and alter the phase of the amplifier gain from its linear value [7, p. 139] [8, pp. 112-125].

In Figure 2.4, it is clearly shown how the PA behavior stops from being linear when the slope of the curve
which represents the relationship between the input and the output saturates. In this example, the amplifier
enters a nonlinear region when it reaches roughly -35dBm of output power. The Gain-to-AM (Figure 2.5)
plot is commonly represented alongside of the AM-to-AM plot. This graph quickly exhibit how the gain of
the PA goes down as the input power increases.

2.4.2 Harmonic distortion

Harmonics or the harmonic content are frequency components placed at integral multiples of the fundamental
frequency of a signal. Total harmonic distortion (THD) has two similar definitions. It basically consists on
the ratio of power of a signal part of the harmonic content to the power of the full signal or the fundamental
component of the signal, always expressed as a percentage [11, pp. 471-477]. Intermodulation distortion
(IMD) is the nonlinear mixing of fundamental and harmonic components of the signal, producing new
frequency components in the spectrum; cross-modulation distortion, produces new frequency components
that already exists [8, p. 131].
Harmonic distortion makes the PAs add undesired nonlinearities which brings the necessity of nonlinear

modeling and characterization. One of the biggest concerns when transmitting a RF signal is that it must
not spread to adjacent channels. Wireless transmitters’ PAs cause distortion in ways such as spreading the
bandwidth out into adjacent channels. In this case, harmonic distortion causes the signal to replicate in
harmonic frequencies of the carrier and intermodulation adds a spectral regrowth to the signal, spreading out
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the bandwidth. Harmonic distortion usually can be dealt with bandpass filters, but the amplitude overlap
produced by IMD cannot be solved with filters. There are legal regulations and standards for this signal
spreading called spectral regrowth and for adjacent-channel interference, so it is an imperative requirement

Figure 2.4 AM-to-AM response of the PA samples of the first experiment.

Figure 2.5 Gain-to-AM response of the PA samples of the first experiment.
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Figure 2.6 Predistorter and PA arranged. AM-to-AM responses along with the resulting output [8].

that must be taken into consideration when designing power amplifiers. This is a contemporary problem
which solution engineers have been trying to improve with countless investigations during the current and
past years [12, p. 5].
Dynamical systems are those whose response in the present is determined by its past input signals. This

are also called systems with memory. This memory effects are a result of energy storage in a circuit formed
by resistances and reactances, among others. These can be expressed as linear system’s time delays or
time derivatives. The amount of past time values needed for nonlinear systems such as PAs is finite, this is
known as fading memory. The more we go back in time, the effect in the presents becomes less significant.
Short-term memory effects are caused by the PAs capacitors, inductors and transmission lines; and long-term
memory effects are caused by thermal-energy storage, charge traps and control circuits.

2.4.3 Digital pre-distortion

Digital pre-distortion is a preeminent technique of linearization in amplifiers. A pre-distorter is placed in
front of the power amplifier adding distortion components to its input signal in a way nonlinearities are
canceled at the output signal of the PA. There is an example of this in Figure 2.6 where AM-to-AM responses
are represented along with the resulting linear output. DPD blocks model the amplifiers’ nonlinearities out
from samples of input and output data. The nonlinear model identification is key to develop robust DPD
systems. Behavioral modeling is the field in which this work is going to focus on.

2.5 Modeling

A PA model describes the relationships between a low-power modulated input signal and a high-power
modulated output signal plus distortions. Input and output signals can be currents or voltages running through
the RF PA. A behavioral model is a simplified model that does not necessarily contain any reference to the
inner physics of the system. Even though, this models are run quicker in simulators than more compact
ones. Models have parameters which allow their configuration. In our case, our PA model may have to
update his parameters constantly to adapt the DPD block to all sorts of modulated signals that our wireless
communication device will transmit.

The process of finding the appropriate parameters for a known solution is called fitting. The input-output
relationship can be translated into a mathematical function and parameters can be the coefficients of an
approximation for this function. Choosing the right parameters will determine the fitness of the model. How
the parameters fit will be judge by another function that will evaluate their accuracy or their error.
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Figure 2.7 MIMO and SISO systems diagram [13].

Polynomial approximations are the best option for global approximation. These work with all the data and
give a complete solution, not only for a region of it. Polynomial fit is measured by calculating the distance
between the data points and the function estimated point (e.g. minimum squared error) [8, ch. 2].

2.5.1 Linear Systems

After this brief explanation about modeling, it is time to study linear and nonlinear systems in order to
understand the behavior of RF PAs. This will help in the selection of a suitable model to solve DPD problems,
for example, in wireless communications.
A linear system has an output proportional to its input. This is commonly expressed with the following

equation.
y = kx, (2.1)

where x is the input signal, y is the output signal and k is a weighing coefficient.
This happens for any combination of inputs and outputs and it is known as the principle of superposition:

y1 + y2 = k1x1 + k2x2 (2.2)

These are single-input, single-output (SISO) systems and multiple input, multiple output (MIMO) systems
(Figure 2.7). Only SISO systems will be reviewed, as notation will be simpler and everything will hold for
the rest.
A linear system output or response is expressed has a sum of two terms: the zero-input response and the

zero-state response. The zero-input response, as its name indicates, are the initial conditions when the input
is zero. The zero-state response result only from the input when the initial conditions are zero:

total response= zero-input response+ zero-state response (2.3)

We must understand some of the basic types of systems, as other systems properties will be needed to
understand the whole problem of modeling a PA. This section will follow the guidance of [14, ch. 1].

Time-invariant systems are those whose parameters do not change with time. The input-output relationship
is the same every T seconds.

Instantaneous or memoryless systems are those which output at any instant only or mostly depends on the
input at the same instant. Otherwise, the system is dynamic or with memory and its response is determined
by the input over the past T seconds.
Causal or physical systems are those where the present instant output only depends on present and past

instants inputs. Noncausal systems depend on future values too. It is necessary to operate with causal systems
when working with real-time applications, but the study of noncausal systems can be important when the
independent variable is not time but others such as space, or when approximate them as causal systems with
delay (Figure 2.8).
Discrete-time systems are samples of continuous-time systems. The main objective of the first ones are

giving the possibility of processing continuous-time systems with computers, as demonstrated in Figure 2.9.
From now on, this work will focus on time-sampled measured data, so equations can be cast in a discrete
form. We shall take continuous time descriptions of linear memory systems as linear difference equations:

y(t)+a1y(t−1)+a2y(t−2)+ ...+any(t−n) = b0u(t)+b1u(t−1)+ ...+bmu(t−m) (2.4)
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Figure 2.8 A noncausal system and its approximation as a delayed causal [14].

Figure 2.9 Continuous-time processing by a discrete-time system [14].

,
where a0 = 1 for convenience. The delays m and n are memory depths in the input and the output signals,

ai and b j are the parameters of the output y(t) and the input u(t) respectively.

2.5.2 Model Identification

The equation previous can be recast in terms of the current instant output y(t) and shortened by vectorizing
all the components:

y(t) = φ
T

θ (2.5)

,
being the φ (t) regression vector and θ the vector of model parameters

φ(t) =
[
−y(t−1) −y(t−2) ... −y(t−n) u(t) u(t−1) ... u(t−m)

]T (2.6)

θ =
[

a1 a2 ... an b0 b1 ... bm
]

(2.7)

Although the solution for y(t) could be recast as a sum of basis functions, where the basis functions are
fundamental solutions to the system:

y(t) =
N

∑
n=0

an fn(u(t)) (2.8)

These set of functions can be extended to nonlinear systems, being linear in the parameters an. This feature
allows a wide variety of linear solutions techniques to be used, such as the least square technique. A least
square criterion will be used in this work.

Given a model structure, with a N samples dataset, an estimation of y(t) can be obtain from a selection of
parameters θ and of regressors of φ (t) and be denoted as ŷ(t). The fitness of the selection of model parameters
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can be calculated from the average of the squares of the distances between the calculated and the measured
point. This measures how far the estimated points fell of the measured data. This is the `2 norm

Error =
1
N

N

∑
t=1

(y(t)− ŷ(t|θ))2 =
1
N

N

∑
t=1

(y(t)−φ
T (t)θ)2 (2.9)

The derivative of this expression equate to zero clears the path in the search of a variable which helps
minimizing the error:

2
N

N

∑
t=1

(φ(t)(y(t)−φ
T (t)θ)) = 0 (2.10)

The model parameters θ becomes the solution that minimizes the distance between the estimated and the
measured points:

θ̂ =

N
∑

t=1
φ(t)y(t)

N
∑

t=1
φ(t)φ T (t)

(2.11)

being θ̂ the parameters extracted from the measured data.
In this dissertation, the error will be measured my the normalized mean square error (NMSE):

NMSE =

N
∑

t=1
(y(t)− ŷ(t))2

N
∑

t=1
y(t)2

(2.12)

Although, expressed in a logarithmic scale:

NMSE
∣∣
dB = 10log10 NMSE (2.13)

John Wood clearly defines the system identification as “the mathematical framework for determining the
dynamical properties of a given system”. This is basically the procedure that will be followed to build a
model, out from a dataset, a model structure and an optimization criterion.

2.5.3 Modeling PA Nonlinearities

As described before, the objective of modeling is to find a smooth function that approximates the input-output
relationship with the minimum error. It must be assumed that noise will not allow estimated points to hit
exactly where data points are, but close and centered around them. It was also explained before how we could
express the solution of our model as a weighted sum of basis functions. This could now be recast in terms of
voltage amplitude, to better represent the characteristic curve of a PA.

vout(t) =
N

∑
n=1

anvn
in(t) (2.14)

Being an the linear parameters and N the degree of the polynomial. This can be written as a matrix:
vin(t1) v2

in(t1) . . . vN
in(t1)

vin(t2) v2
in(t2) . . . vN

in(t2)
vin(t3) v2

in(t3) . . . vN
in(t3)

. . . . . .
. . . . . .

vin(tT ) v2
in(tT ) . . . vN

in(tT )




a1
a2
...

aN

=


vout(t1)
vout(t2)
vout(t3)

...
vout(tN)

 (2.15)

If the number of data points is the same as the polynomial degree, T equals N, this is a square matrix called
Vandermonde matrix. It can be easily solved, although having such polynomial degree would not be a great
idea. More degree is not always better, increasing it to a very high number would not make the model more
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Figure 2.10 Vito Volterra [15].

precise. Fitness and accuracy end up saturating at certain degree. Generally, T will be much higher than N,
having an overdetermined system, with more data than parameters. This can be cast as follows:

H~x =~y (2.16)

Where H is an M x N matrix, with a number of data points bigger than coefficients: M > N. A solution for
this matrix equation is found as follows:

H~x =~y, (2.17)

H ′H~x = H ′H~y, (2.18)

~x = (H ′H)−1H ′~y, (2.19)

this is the least square (LS) method. It will be used in one of the algorithm that will be discussed later.
Although while modeling with voltage amplitude, only AM-to-AM conversion effects were being included in
the model. To include AM-to-PM effects to the model, the coefficients of the polynomial shall be considered
complex, so phase is also taken into the equation:

ai→ |ai|∠ϕ = Re[aie
jϕi ] (2.20)

2.6 Nonlinear Dynamical Models

After summarizing the mathematical background of this state-of-the-art review, a mathematical framework is
now needed for building nonlinear dynamical models. The framework chosen for this task were Volterra
series. This will be done in a sampled time domain. Volterra series are a very straightforward way to build
linear-in-parameters polynomial models, this features were explained in past chapters.
Vito Volterra (Figure 2.10) was an Italian mathematician whose work led to the development of a new

branch of mathematics: functional analysis. He studied at the University of Pisa and graduated with a Doctor
of Physics degree in 1882. He was named Professor of Rational Mechanics at Pisa a year later. His theory of
functionals led to new fields of analysis, such as the solution of differential and integral equations. Norbert
Wiener became very interested of Volterra’s theories through a student of the Italian: Paul Levy. Wiener was
the first one known to use Volterra series to model PAs. The limitations in computational capacity made
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Volterra series of higher degree wait until more powerful techniques were invented and computers were
capable of handling their computational load.

2.6.1 Volterra Series

Volterra Series can be described out from Taylor series. An expression very similar to those used in previous
chapters is a nice starting point:

y(t) = a0 +
N

∑
n=1

anun(t) (2.21)

The an polynomial coefficients are extracted from the Taylor series of the input-output relationship, around
some operating point u0:

y(u(t)) = y(u)
∣∣
u=u0

+
1
2!

dy
du

∣∣∣∣
u=u0

(u−u0)+
1
3!

d2y
du2

∣∣∣∣
u=u0

(u−u0)
2 + · · ·= a0 +a1u+a2u2 + . . . (2.22)

In order to consider memory effects, y(t) must be a function of u(t) and the previous values of u:

y(t) = f (u,u1,u2, . . . ,un) (2.23)

being
u = u(t),u1 = u(t− τ1),u2 = u(t− τ2), . . . ,un = u(t− τn) (2.24)

The Taylor series expression should be then:

y(u(t)) =y(u)
∣∣
u−u0

+
1
2!

dy
du

∣∣∣∣
u=u0

(u−u0)+
1
2!

dy
du1

∣∣∣∣
u=u0

(u1−u0)+ . . .

+
1
3!

d2y
du2

∣∣∣∣
u=u0

(u−u0)
2 +

1
3!

d2y
dudu1

∣∣∣∣
u=u0

(u−u0)(u1−u0)+ . . .

(2.25)

This is a multinomial series where memory terms are easily observed in (u1−u0) and in the cross-terms:
(u− u0)(u1− u0). That is why Volterra series are usually referred to as Taylor series with memory. As
mentioned numerous times earlier, for the model generation, discrete time-sampled data will be used. So, the
expression which considers memory effects will be recast as follows:

y(t) = fpoly(u(t),u(t−1), . . . ,u(t−M)) (2.26)

Where fpoly() represents the Volterra polynomial function, t is the sampling instant and M is the memory
depth of the model, measured as time steps or delays. This expression can be expanded in the others of the
multinomial series:

y(t) =
M

∑
m1

h1(m1)u(n−m1)

+
M

∑
m1

M

∑
m2

h2(m1,m2)u(n−m1)u(n−m2)+ . . .

+
M

∑
m1

· · ·
M

∑
mk

h2(m1, . . . ,mk)u(n−m1) . . .u(n−mk)

+
K

∑
n=1

M

∑
m1

· · ·
M

∑
mk

hn(m1, . . . ,mk)
k

∏
j=1

u(n−m j)

(2.27)

,
where hn(m1,m2, . . . ,mn) are the Volterra kernels, analogous to the coefficients of the instantaneous

polynomial; N, the polynomial degree; and M, the memory depth. Usually, Volterra series keep the same
memory depth for all the polynomial orders.

Kernels are nothing but system transfer functions which we use in a discrete form for our discrete nonlinear
dynamical model. Morgan and colleagues [16] refer to them as filters, and with this interpretation we will be
able to work with our data in their low-, band or high- pass components.
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Accuracy of Taylor series models is best when close to the point around which is being made. A Volterra
series model of PA should be centered at or close to the average signal power. From this point, the PA will
typically run into compression, so memory and thermal effects will be included in the model. The solution
given by the Volterra series can be improved also by adding more terms into the polynomial series: memory
and cross-terms. This will lead to a smaller tolerance of the model. However, increasing the number of
terms also increases the difficulty to find a solution for a model. Higher order Volterra series were a mere
hypothesis until modern and multicore processors made their appearance.
There has been several attempts to reduce the number of terms when modeling power amplifiers. This

is referred to in many articles as “pruning”, as a metaphor where the terms are the leaves and branches of
a Volterra series tree. Pruning techniques by themselves would be enough to write a few long final degree
works. A Volterra series modeled can be pruned just by limiting the total number of coefficients in the
polynomial or by following complex algorithms that evaluate the significance of every term. It is common to
see even-order terms ignored when modeling PAs, although no pruning technique will be used in the first
algorithm that will be explained later.
Simplified Volterra series models have been proposed over the years. The model on which this work is

going to focus comes of the refinement of models, all derivatives from the Volterra series model.
The first of them is the Wiener model:

yW (n) =
K

∑
k=0

ak

[
M−1

∑
m=0

h(m)u(n−m)

]k

(2.28)

In this model, kernels are integrated into the power series, so they are no longer linear in parameters. This
makes it more difficult to identify the coefficients.
The second is the Hammerstein model:

yH(n) =
M−1

∑
m=0

hm

[
K

∑
k=0

akuk(n−m)

]
(2.29)

This is a much simpler expression, where kernels can be easily identified as it is linear in parameters.
The Wiener-Hammerstein model is the combination of the two previous models:

yWH(n) =
M−1

∑
m2

K

∑
k=0

ak

[
M−1

∑
m1=0

h(m1)u(n−m1−m2)

]k

(2.30)

This model mimics the structure of a PA closer than the previous ones, although it still presents the
nonlinear parameters like the Wiener model.

Choosing different filters for each different order and thus combining the different kernels and power series
coefficients, the generalized Hammerstein can be cast:

yGH(n) =
K

∑
k=1

M−1

∑
m=0

akmxk(n−m) (2.31)

Considering only the narrowband case, we arrive to the memory polynomial, formulated in [17]:

yMP(n) =
K−1

∑
k=0

M−1

∑
m=0

akmx(n−m)‖x(n−m)‖k (2.32)

This model only includes what are called “diagonal” terms, where there are no cross-terms. The Generalized
Memory Polynomial (GMP) proposed by Morgan et al. [16] introduces the cross-terms to the previous model.
In this case, both positive and negative cross-terms are considered:

yGMP(n) =
Ka−1

∑
k=0

La−1

∑
l=0

aklx(n− l)|x(n− l)|k

+
Kb

∑
k=0

Lb−1

∑
l=0

Mb

∑
m=0

bklmx(n− l)|x(n− l−m)|k

+
Kc

∑
k=0

Lc−1

∑
l=0

Mc

∑
m=0

cklmx(n− l)|x(n− l +m)|k

(2.33)
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In this model we can identify: the a-part, where the diagonal terms are included; the b-part, where the
lagging cross-terms are; and the c-part, where the leading cross-terms are. The GMP model is linear in
parameters, so they can be simply estimated with any least square algorithm.

This model shall be used for the first experiment. The parameters that the first algorithm will try to optimize
will be Ka,La,Kb,Lb,Mb,Kc,Lc,Mc.



3 The Hill Climbing Algorithm

An ounce of action is worth a ton of theory.

Friedrich Engels

Although the model structure which is going to be used for modeling PA has already been fixed, an
algorithm of optimization is still needed. This must contain a list of rules or operations which lead to a
solution. In this work, the solution will be the configuration parameters that build the optimal model. For this
task, the Hill-Climbing Heuristic (HC) was selected. The reason why this algorithm picked as the first one in
this work, was to put into practice and review what Wang et al. explained in their work [2]. As it is mentioned
in that paper, to their knowledge, it was the first time that an algorithm based on HC was implemented and
studied for sizing GMP model structures of DPD. There was a stopping criterion selected in order to find
the right combination of the model parameters for each experiment, and not become and endless iterative
algorithm, as well as another algorithm to compare with the HC and a laboratory procedure in order to obtain
empirical results out of the experiment. All this will be further explained inside this chapter.

3.1 The HC Algorithm

HC is a greedy search algorithm that makes an exhaustive search, evaluating one by one all the models until
the best one to its criterion is found. When it finds the local optimum model inside a local solution space,
this local optimum model will be used to search again around its local solution space for a more optimum
model. Although HC algorithm has proven its efficacy, it does not necessarily find global optimum solutions.
HC algorithms are very dependent of their starting point, and this sometimes leads to give a solution that is a
local and not global one.
HC is an iterative algorithm that begins from an initial solution and then tries to find a better solution

by comparing it to its neighbors. Every time a better solution is found among the neighbors of the current
solution, it is taken as current solution. This process is repeated until no better solution is found. There must
be a criterion that determines the fitness of a model, so the algorithm can sort the solutions in order to find
the best. Two are proposed in [2], although only the additive criterion is studied in this final degree work.
This criterion aims to evaluate how good a model is. This is made through looking into the models’

accuracy (NMSEdB), has mentioned earlier. However, as explained in [8, ch. 6,pp. 165–168], accuracy of
Volterra series models can be improved by increasing the number of terms of the model, so, the additive
criterion also evaluates the model complexity, reflected in the number of coefficients of the model. To achieve
this, the additive criterion is defined as a weighted sum of accuracy and complexity:

J(xi) = NMSEdB(xi)+µNUMCOEF(xi) (3.1)

where J(xi) is the merit value that represents the fitness of the model, NMSEdB(xi) is the normalized mean
squared error in decibels and NUMCOEF(xi) is the number of coefficients, all of the model structure i. Merit
values become better as they become more negative, as the NMSEdB is a negative value itself. The higher
the accuracy and the lesser number of coefficients, the better.

15
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The number of regressors of a GMP model is obtained with the following equation:

NUMCOEF= (Ka +1)(La +1)+Kb(Lb +1)Mb +Kc(Lc +1)Mc (3.2)

Instead of performing an exhaustive search, the algorithm works with the merit value and the definition of
a neighborhood used.
As explained in [2], all the possible GMP model structures are held inside the discrete space U. Each

structure xi consists of 8 coordinates: Ka,i,La,i,Kb,i,Lb,i,Mb,i,Kc,i,Lc,i,Mc,i, which are the parameters of the
model. A merit value J(xi) is associated to each element xi.

HC tests only elements which are successors or neighbors, which is how they will be referred to from now
on, at each iteration. Neighbors are defined as an 8-tuple:

(Ka,i +δ1,La,i +δ2,Kb,i +δ3,Lb,i +δ4,Mb,i +δ5,Kc,i +δ6,Lc,i +δ7,Mc,i +δ8) (3.3)

where
δ1,...,8 ∈ [−1,+1], (3.4)

where the subspace of neighbors or neighborhood i is denoted Si and is inside U: Si ∈U .
The HC algorithm searches for the neighbor with the minimum merit value at each iteration, takes it

as the new current solution and starts again searching around its neighbors. There is an overlap between
neighborhoods of subsequent iterations, however the algorithm does not evaluate elements which have been
already evaluated. The search ends when the solution for two subsequent iteration is the same, so no better
model structure has been found. An example of this is shown in Figure 3.1, where the red line is the path of
optimum models selected at each iteration until the best one is found.
The maximum size of a neighborhood (SON) is 38 = 6561, although this maximum will not be often

reached. This happens because the overlapping elements between neighborhoods are not evaluated twice, but
only in the neighborhood of the model evaluated first. Each iteration neighborhood is shown in a different
color. The SON can be also seen in Figure 3.2 for the same simulation as the one mentioned before. The
algorithm was set to find the best model with a maximum of 80 parameters. Representing the SON against
the number of iterations allows to see how complex a search for a model was with the naked eye.

The obtention of the weighting coefficient µ still needs to be explained. Although there is already a proposal
of how to obtain it in [2], the approach presented by Becerra et al [18] was used for the first experiment.

3.2 The Bayesian Information Criterion

The weighting coefficient is the angular stone of the algorithm, as it will dictate how the merit value is
calculated. This is why it is also called stopping criterion. The one proposed at [18] is based on the Bayesian
information criterion (BIC) by Schwarz in [19]. Schwarz presented an application of the Bayes' theorem to
obtain a modification of the maximum likelihood principle.
In [18], the BIC expression depends on the error, the number of model coefficients and the number of

samples used for the model identification. This makes the error dependent of the number of samples. The
BIC is initially decreasing, and the best merit value will be found when the BIC function stops decreasing.
The optimum model selected by the algorithm will be the one whose BIC value is an absolute minimum.

Following the same mathematical procedure applied in [18], µ will become µBIC:

µBIC =
10
M

log10 2M, (3.5)

where M is the total number of samples used for the search.
Thus, the additive criterion will be:

JBIC(xi) = NMSEdB(xi)+µBICNUMCOEF(xi) (3.6)

3.3 The DOMP algorithm

Another algorithm also by Becerra et al [18] was used to match results with the HC in the coming experiment.
The Doubly Orthogonal Matching Pursuit (DOMP) [20] belongs to the vast literature on techniques applied
on the DPD context. This method performs two orthogonalizations over the basis matrix. To better understand
this algorithm, the OMP should be explained first:
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Figure 3.1 Example of a plot of subsequent neighborhoods in different colors.
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80 coefficients per model.
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3.3.1 The OMP algorithm

The Orthogonal Matching Pursuit (OMP) is an sparse approximation algorithm which minimizes the sparsity
of an input vector by finding the best matching projections of a dictionary or family of functions or vectors
with the output. The error is measured through the residual, which is the difference between the output and
the estimated output.
The equation to be solved is the following:

y = Xh (3.7)

where X is the dictionary (X ∈ CMxN), y is the output signal (y ∈ CM) and h is the Volterra kernel vector.
During the first iteration, the column of X whose projection over y is larger is calculated and added to the

basis matrix:

i(1) = argmax
1≤n≤N

|XH
n y| (3.8)

Then, the column i(1) of X is added to the basis matrix:

S(1)← Xi(1) (3.9)

The least square technique is applied to obtain an estimation of the Volterra kernel vectors:

ĥ(1) = S+
(1)y (3.10)

where S+
(1) is the pseudo-inverse matrix:

S+
(1) = (SH

(1)S(1))
−1SH

(1) (3.11)

After this, the error is measured via the residual:

r(1) = y−S(1)ĥ
(1) = y− ŷ(1) (3.12)

The subsequent iterations will take the residual as a starting point. With this said, the m-th iteration would
be:

i(m) = argmax
1≤n≤N

|XH
n r(m−1)| (3.13)

S(m)← [S(m−1)Xi(m) ] (3.14)

ĥ(m) = S+
(m)

y (3.15)

r(m) = y−S(m)ĥ
(m) = y− ŷ(m) (3.16)

where S+
(m)

= (SH
(m)S(m))

−1SH
(m) and m≥ 1

3.3.2 The DOMP

The basis set is a matrix defined in [20] that contains the information about the orthogonalized regressors. It
begins with Z(0) = X . And during every iteration it is normalized by its `2−norm.

Z{i}←
Z(m−1)
{i}

‖Z(m−1)
{i} ‖2

(3.17)

The DOMP performs the Gram-Schmidt orthogonalization by obtaining the vector projections of the
selected regressor onto each one of the components of the basis matrix. Then, this projections are substracted
from each regressor, ensuring they are orthogonal to the remaining of the basis set.

p(m) = Z(m−1)H

{i(m)} Z(m−1) (3.18)
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Zm = Z(m−1)− p(m)⊗Z(m−1)
{i(m)} (3.19)

Where ⊗ is the denotes the Kronecker product of the two matrices.





4 Experimental Designs and Results

In order to seek truth, it is necessary once in the course of our
life to doubt, as far as possible, of all things.

René Descartes

4.1 BIC: Number of Samples

As it was explained before, the BIC rule theoretically decreases as the number of samples of the input and
output signals M used to create the model increases. This could make the algorithm to identify as optimum
models some with components with less effect on the error iteration after iteration [18]. However, this was
put into practice in this work, comparing tests varying M from 5500 to roughly 70000 data samples.

The first thing which clearly increases with M is the time of calculation (ToC). In Figure 4.13, there is an
example of this. The NMSE suffers a small increase of 1.4 dB (Figure 4.14), although the ToC goes up from
3 to 97 minutes. There is clearly no advantage on deliberately increasing the number of samples used for
the exhaustive search of the optimum model. The optimum structure for each simulation varying only the
number of samples is listed below, as well as a plot of every simulation from Figure 4.1 to 4.11.
For 5529 samples (1.5% of the signal’s total length), after 4 iterations:

Ka = 5, La = 1

Kb = 1, Lb = 2, Mb = 4

Kc = 3, Lc = 3, Mc = 4

NMSEdB =−41.3921

NUMCOEF = 72

For 7372 samples (2% of the signal’s total length), after 15 iterations:

Ka = 6, La = 3

Kb = 1, Lb = 2, Mb = 4

Kc = 5, Lc = 1, Mc = 4

NMSEdB =−40.8157

NUMCOEF = 80

For 8479 samples (2.3% of the signal’s total length), after 14 iterations:

Ka = 5, La = 5

Kb = 1, Lb = 1, Mb = 4

Kc = 4, Lc = 1, Mc = 4

NMSEdB =−41.2527

21



22 Chapter 4. Experimental Designs and Results

NUMCOEF = 76

For 11427 samples (3.1% of the signal’s total length), after 33 iterations:

Ka = 5, La = 3

Kb = 2, Lb = 1, Mb = 4

Kc = 5, Lc = 1, Mc = 4

NMSEdB =−40.6274

NUMCOEF = 80

For 13529 samples (3.67% of the signal’s total length), after 38 iterations:

Ka = 5, La = 3

Kb = 1, Lb = 1, Mb = 4

Kc = 7, Lc = 1, Mc = 3

NMSEdB =−40.4647

NUMCOEF = 74

For 15851 samples (4.3% of the signal’s total length), after 15 iterations:

Ka = 5, La = 5

Kb = 1, Lb = 1, Mb = 4

Kc = 5, Lc = 1, Mc = 3

NMSEdB =−40.9356

NUMCOEF = 74

For 18431 samples (5% of the signal’s total length), after 14 iterations:

Ka = 3, La = 5

Kb = 10, Lb = 1, Mb = 2

Kc = 4, Lc = 1, Mc = 2

NMSEdB =−40.6915

NUMCOEF = 80

For 23225 samples (6.3% of the signal’s total length), after 33 iterations:

Ka = 3, La = 5

Kb = 1, Lb = 4, Mb = 4

Kc = 4, Lc = 2, Mc = 3

NMSEdB =−41.1251

NUMCOEF = 80

For 33177 samples (9% of the signal’s total length), after 34 iterations:

Ka = 3, La = 5

Kb = 2, Lb = 4, Mb = 4

Kc = 4, Lc = 1, Mc = 2

NMSEdB =−40.7117

NUMCOEF = 80

For 55295 samples (15% of the signal’s total length), after 10 iterations:
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Ka = 6, La = 5

Kb = 1, Lb = 1, Mb = 2

Kc = 4, Lc = 1, Mc = 4

NMSEdB =−40.5884

NUMCOEF = 78

For 70042 samples (19% of the signal’s total length), after 18 iterations:

Ka = 3, La = 5

Kb = 10, Lb = 1, Mb = 2

Kc = 4, Lc = 1, Mc = 2

NMSEdB =−39.9820

NUMCOEF = 80

Even if the number of samples is multiplied almost 13 times from the initial value of 5529 samples, the
value of the NMSE does not differ much from the default one. NUMCOEF fluctuates arbitrarily from 72 to
80 regressors, although this difference is not significant. The small difference between the optimum paths of
all the simulations is represented in Figure 4.12.

4.2 Size Matters in Exhaustive Searches

In order to better understand how this algorithm works, various simulations were done with further limits.
The main reason for this was to empirically prove how always increasing the number of coefficients is going
to bring better NMSE and how important is to choose the correct stopping rule.

The HC method used with the BIC stopping rule was limited to a maximum of 250 regressors per model.
The model parameters were also delimited to a certain range in order to reduce the ToC, as they do in [2].
This has been empirically proven in this work, bringing down the ToC from days to few hours to few minutes.
The ranges of the parameters for the upcoming experiments will be:

1 6 Ka 6 11, 1 6 Kb 6 10, 1 6 Kc 6 10

1 6 La 6 5, 1 6 Lb 6 5, 1 6 Lc 6 5

1 6 Mb 6 4, 1 6 Mc 6 4

It is interesting also how the size of the neighborhoods evolves in simulations with higher limits of
coefficients. That is the case of Figure 4.15, where the limit was set to 400 coefficients. This type of
simulation is impractical. The reason for considering this impractical is simple: a 1-dB-improvement in the
NMSE should not come at the cost of 200 coefficients. However, seing how the algorithm works in the long
run could help to understand its behavior. When the same search is delimited inside the ranges explained
above, number of iterations drastically drops from 233 to 13. The time of execution is reduced from 1217.60
minutes or 20.29 hours to 19.14 minutes. This justifies the necessity of applying delimitation rules to the
parameters.
Figure 4.17 belongs to the same simulation as Figure 4.15. The monotonically decreasing convex hull

reveals at first glance that the optimum model is going to be found in close to the limit of coefficients. There
is another plot using the merit value that allows the observer to see how the minimization process using the
BIC rule affects to the exhaustive search for the optimum model. This is the case of Figure 4.18. The belly
that appears between the 100 and the 350 coefficients-per-model range helps foreseeing where the optimum
is. This idea is confirmed when the optimums path is overlapped.
The solution for this heavy and impractical simulation, after 233 iterations was:

Ka = 5, La = 9

Kb = 3, Lb = 1, Mb = 2

Kc = 4, Lc = 4, Mc = 7

NMSEdB =−42.8269

NUMCOEF = 212
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Figure 4.1 Plot of the HC when the number of samples is set to 5529. Number of coefficients against NMSE
of the HC, limited to 80 coefficients. Neighborhoods are represented in different colors. The
optimums path to the solution in red.
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Figure 4.2 Plot of the HC when the number of samples is set to 7372. Number of coefficients against NMSE
of the HC, limited to 80 coefficients. Neighborhoods are represented in different colors. The
optimums path to the solution in red.
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Figure 4.3 Plot of the HC when the number of samples is set to 8479. Number of coefficients against NMSE
of the HC, limited to 80 coefficients. Neighborhoods are represented in different colors. The
optimums path to the solution in red.
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Figure 4.4 Plot of the HC when the number of samples is set to 11427. Number of coefficients against NMSE
of the HC, limited to 80 coefficients. Neighborhoods are represented in different colors. The
optimums path to the solution in red.
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Figure 4.5 Plot of the HC when the number of samples is set to 13529. Number of coefficients against NMSE
of the HC, limited to 80 coefficients. Neighborhoods are represented in different colors. The
optimums path to the solution in red.
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Figure 4.6 Plot of the HC when the number of samples is set to 15851. Number of coefficients against NMSE
of the HC, limited to 80 coefficients. Neighborhoods are represented in different colors. The
optimums path to the solution in red.
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Figure 4.7 Plot of the HC when the number of samples is set to 18431. Number of coefficients against NMSE
of the HC, limited to 80 coefficients. Neighborhoods are represented in different colors. The
optimums path to the solution in red.
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Figure 4.8 Plot of the HC when the number of samples is set to 23225. Number of coefficients against NMSE
of the HC, limited to 80 coefficients. Neighborhoods are represented in different colors. The
optimums path to the solution in red.
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Figure 4.9 Plot of the HC when the number of samples is set to 33177. Number of coefficients against NMSE
of the HC, limited to 80 coefficients. Neighborhoods are represented in different colors. The
optimums path to the solution in red.
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Figure 4.10 Plot of the HC when the number of samples is set to 55295. Number of coefficients against
NMSE of the HC, limited to 80 coefficients. Neighborhoods are represented in different colors.
The optimums path to the solution in red.
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Figure 4.11 Plot of the HC when the number of samples is set to 70042. Number of coefficients against
NMSE of the HC, limited to 80 coefficients. Neighborhoods are represented in different colors.
The optimums path to the solution in red.
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Figure 4.12 Optimum paths of all the simulations varying the M from 5529 to 70042 samples. Every optimum
solution marked with a black asterisk.
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As for the most of the simulations and experiments, the maximum number of coefficients is going to be
much less than 400 coefficients. The relative minimum that appears at the bottom of the belly of Figure 4.18
using the BIC as stopping rule is unlikely going to be reached. The following subsections will be based on the
argument that solutions will be usually found close to the limit of maximum coefficients allowed. The main
goal of this section is the pursue of an improved-performace HC-based algorithm, specially in terms of ToC.

4.2.1 A Review of the Initial Model

For the next section, a initial model will be needed. The initial model is just a starting point, a first neighbor
of the big iterative search. Just for convenience and to eliminate the variability that this could bring, the same
will be used in the simulations in section 4.4. However, along this section, the configuration of the initial
model will be tested.

Ka = 1, La = 1

Kb = 1, Lb = 1, Mb = 1

Kc = 1, Lc = 1, Mc = 1

NMSEdB =−26.4006

NUMCOEF = 8

All the solutions found by the HC algorithm up until now were in the second half of the possible range
of coefficients. An example of this is shown in 4.20. As one of the main purposes of this work is to
find the swiftest algorithm for DPD, the next step was to find a starting point which saved the algorithm
from calculating useless and less-complex models which may be discarded later. In other words, the next
experiment’s goal is to prove how the first neighbor determines the ToC and what recommended rules may
be implemented to find an appropriate starting point, more complex than a simple starting point but closer to
a solution.
The first simulation was configured with the initial model explained above and the maximum number of

coefficients was 80, as in [2]. The improvement in NMSE passing the 80 coefficients is going to be considered
impractial, as the The range delimited for the parameters are also detailed at the beginning of this section.
The result of the simulation is shown in Figure 4.19. The HC algorithm took 11.63 minutes to come up

with the solution. A comparison with different simulations changing their initial models appears in Figure
4.20. The result are always in the range betweeen 72 and 80 coefficients, but the time of calculation was
clearly reduced when the initial model was inside the range of 40 to 60 coefficients.
There were only 3 different solutions for the 11 simulations:

Ka = 5, La = 1

Kb = 1, Lb = 2, Mb = 4

Kc = 3, Lc = 3, Mc = 4

NMSEdB =−41.3921

NUMCOEF = 72

Ka = 5, La = 5

Kb = 1, Lb = 1, Mb = 4

Kc = 4, Lc = 1, Mc = 4

NMSEdB =−41.4955

NUMCOEF = 76

Ka = 5, La = 3

Kb = 1, Lb = 5, Mb = 4

Kc = 4, Lc = 1, Mc = 4

NMSEdB =−41.5153

NUMCOEF = 80
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Figure 4.13 Time of calculation against the number of samples used in the optimum model identification.
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Figure 4.14 NMSE against time of calculation. The mean NMSE is represented as a constant blue line.
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Figure 4.15 Number of models calculated per iteration or the size of all the neighborhoods of a search limited
to a maximum of 400 coefficients per model.
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Figure 4.16 Number of models calculated per iteration or the size of all the neighborhoods of a search limited
to a maximum of 400 coefficients per model.
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Figure 4.17 Plot of the first experiment simulation. Number of coefficients against merit value of the HC+BIC,
limited to 400 coefficients..

Figure 4.18 Plot of the first experiment simulation. Number of coefficients against merit value of the HC+BIC,
limited to 400 coefficients. The optimums path followed by the HC algorithm in light green..
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Figure 4.19 Plot of the first experiment simulation. Number of coefficients against NMSE of the HC, limited
to 80 coefficients. Neighborhoods are represented in different colors. The optimums path to the
solution in red.
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Figure 4.20 Comparison of the optimums path of several simulations limited to 80 coefficients and with the
same conditions, but changing the initial model. The solutions for all the simulations represented
as black dots.
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Figure 4.21 Comparison of the ToC of several simulations limited to 80 coefficients in blue and delimited
between 40 and 80 in magenta, with the same conditions and varying the initial model.

4.2.2 Halved-Complexity HC

As a consequence of the results obtained in prior simulations, new ones were carried out delimiting the number
of coefficients, not only the maximum but also the minimum. This was denoted as the Halved-Complexity
HC (HCHC). The minimum number of coefficients would be half the maximum. A comparison between the
HC doing an exhaustive search and the HCHC is shown in Figure 4.21. The mean ToC was reduced from
6.46 to 5.54 minutes. This proves how constraining the number of coefficients can be an effective way to
reduce the computational load of the search. There are other proposals like [2], although this one does not
add extra complexity to the algorithm.

4.3 Power Sweep

Another test was performed to analyse the behavior of the algorithm when the input power was gradually
increased from -30 to -20 dBm with 1 decibel steps generating 11 different datasets. The number of samples
(M) used on each iteration was 55000. The components of this testbench were:

• One SMW200A vector signal generator (VSG) from Rohde & Schwarz
• One BLD6G22L-50 Demo Board Doherty PA from NXP Semiconductors
• One FSW26 vector signal analyzer (VSA) from Rohde & Schwarz

The configuration of the testbench was:

• -30 to -20 dBm input power.
• 15 MHz LTE signal under test.
• 55000 signal samples used for model identification, which corresponds whith a µBIC = 0.0009166 dB

The 11 datasets that were generated with the testbench were used as input arguments of the HC algoritm.
All the final model structures are listed below (Figure 4.22 to 4.32).

For -30 dBm, after 47 iterations:
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Ka = 4, La = 2

Kb = 3, Lb = 4, Mb = 4

Kc = 1, Lc = 1, Mc = 2

NMSEdB =−34.4491

NUMCOEF = 79

For -29 dBm, after 11 iterations was:

Ka = 2, La = 5

Kb = 4, Lb = 1, Mb = 3

Kc = 1, Lc = 5, Mc = 6

NMSEdB =−34.5978

NUMCOEF = 78

For -28 dBm, after 20 iterations was:

Ka = 2, La = 5

Kb = 4, Lb = 1, Mb = 3

Kc = 1, Lc = 5, Mc = 6

NMSEdB =−34.5085

NUMCOEF = 78

For -27 dBm, after 28 iterations was:

Ka = 7, La = 4

Kb = 2, Lb = 3, Mb = 4

Kc = 1, Lc = 1, Mc = 4

NMSEdB =−34.1366

NUMCOEF = 80

For -26 dBm, after 4 iterations was:

Ka = 1, La = 5

Kb = 3, Lb = 3, Mb = 4

Kc = 1, Lc = 3, Mc = 4

NMSEdB =−32.1032

NUMCOEF = 76

For -25 dBm, after 11 iterations was:

Ka = 1, La = 5

Kb = 7, Lb = 1, Mb = 2

Kc = 1, Lc = 5, Mc = 6

NMSEdB =−33.2911

NUMCOEF = 76
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For -24 dBm, after 4 iterations was:

Ka = 1, La = 5

Kb = 3, Lb = 3, Mb = 4

Kc = 1, Lc = 3, Mc = 4

NMSEdB =−32.5060

NUMCOEF = 76

For -23 dBm, after 4 iterations was:

Ka = 1, La = 5

Kb = 3, Lb = 3, Mb = 4

Kc = 1, Lc = 3, Mc = 4

NMSEdB =−32.9390

NUMCOEF = 76

For -22 dBm, after 21 iterations was:

Ka = 1, La = 5

Kb = 2, Lb = 5, Mb = 4

Kc = 4, Lc = 1, Mc = 2

NMSEdB =−31.1201

NUMCOEF = 76

For -21 dBm, after 19 iterations was:

Ka = 5, La = 5

Kb = 2, Lb = 1, Mb = 2

Kc = 1, Lc = 5, Mc = 6

NMSEdB =−33.7730

NUMCOEF = 80

And for -20 dBm, after 4 iterations was:

Ka = 1, La = 5

Kb = 3, Lb = 3, Mb = 4

Kc = 1, Lc = 3, Mc = 4

NMSEdB =−31.6498

NUMCOEF = 76

It is evident, judging by the results represented in Figure 4.34, how each 1-dB step from -30 to -20 dBm
decreases the NMSE as the PA enters more a more in a nonlinear region. However, as it can be seen in Figure
4.33, the number of structures calculated tends to decrease when the input power is higher.
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Figure 4.22 Plot of the testbench when the input power is set to -30 dBm. Number of coefficients against
NMSE of the HC, limited to 80 coefficients. Neighborhoods are represented in different colors.
The optimums path to the solution in red.
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Figure 4.23 Plot of the testbench when the input power is set to -29 dBm. Number of coefficients against
NMSE of the HC, limited to 80 coefficients. Neighborhoods are represented in different colors.
The optimums path to the solution in red.
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Figure 4.24 Plot of the testbench when the input power is set to -28 dBm. Number of coefficients against
NMSE of the HC, limited to 80 coefficients. Neighborhoods are represented in different colors.
The optimums path to the solution in red.
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Figure 4.25 Plot of the testbench when the input power is set to -27 dBm. Number of coefficients against
NMSE of the HC, limited to 80 coefficients. Neighborhoods are represented in different colors.
The optimums path to the solution in red.
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Figure 4.26 Plot of the testbench when the input power is set to -26 dBm. Number of coefficients against
NMSE of the HC, limited to 80 coefficients. Neighborhoods are represented in different colors.
The optimums path to the solution in red.
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Figure 4.27 Plot of the testbench when the input power is set to -25 dBm. Number of coefficients against
NMSE of the HC, limited to 80 coefficients. Neighborhoods are represented in different colors.
The optimums path to the solution in red.
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Figure 4.28 Plot of the testbench when the input power is set to -24 dBm. Number of coefficients against
NMSE of the HC, limited to 80 coefficients. Neighborhoods are represented in different colors.
The optimums path to the solution in red.
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Figure 4.29 Plot of the testbench when the input power is set to -23 dBm. Number of coefficients against
NMSE of the HC, limited to 80 coefficients. Neighborhoods are represented in different colors.
The optimums path to the solution in red.
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Figure 4.30 Plot of the testbench when the input power is set to -22 dBm. Number of coefficients against
NMSE of the HC, limited to 80 coefficients. Neighborhoods are represented in different colors.
The optimums path to the solution in red.
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Figure 4.31 Plot of the testbench when the input power is set to -21 dBm. Number of coefficients against
NMSE of the HC, limited to 80 coefficients. Neighborhoods are represented in different colors.
The optimums path to the solution in red.
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Figure 4.32 Plot of the testbench when the input power is set to -20 dBm. Number of coefficients against
NMSE of the HC, limited to 80 coefficients. Neighborhoods are represented in different colors.
The optimums path to the solution in red.
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Figure 4.33 Number of models calculated per iteration as an accumulative sum, representing every step of
the power sweep in a different color.
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Figure 4.34 Optimum paths of all the simulations of the power sweep from -30 to -20 dBm. Every optimum
solution marked with a black asterisk.

4.4 BIC: HC vs DOMP

The experiment that compares the performane of the HC and the DOMP algorithm will be described in this
section.

4.4.1 Simulation Results

The parameters of the optimum model after 13 iterations found by the HC algorithm were:

Ka = 5, La = 2

Kb = 3, Lb = 4, Mb = 4

Kc = 4, Lc = 5, Mc = 4

NMSEdB =−41.0694

NUMCOEF = 174

The DOMP beside the BIC stopping rule was applied to the model with the maximum number of parameters
found by the HC:

Ka = 6, La = 3

Kb = 4, Lb = 5, Mb = 4

Kc = 5, Lc = 5, Mc = 4

NMSEdB =−42.5029

NUMCOEF = 244
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And the optimum model obtained by the DOMP with BIC was:

Ka = 6, La = 3

Kb = 4, Lb = 5, Mb = 4

Kc = 5, Lc = 4, Mc = 6

NMSEdB =−42.2977

NUMCOEF = 124

Figure 4.35 Plot of the first experiment simulation. Number of coefficients against NMSE of the HC and the
DOMP.

The space of all the possible solutions calculated along the seven iterations that took the simulator to find
the local optimum is represented in Figure 4.35. The DOMP is a more powerful algorithm and was able to
obtain an optimum model with 50 coefficients less and roughly -1 dB compared to the HC algoritm. The
DOMP takes also less time to estimate the best regressors of the optimum GMP model. The HC optimum
was found in 21.59 minutes, while the DOMP only took 1.53 minutes to find it.

4.4.2 Empirical Results

First of all, the components of the testbench will be listed below:

• One SMU200A vector signal generator (VSG) from Rohde & Schwarz

• One PXA-N9030A vector signal analyzer (VSA) from Keysight

• One dc power supply

• One DUT: one cascade of two Mini-Circuits TVA-4W-422A+ preamplifiers and one continuous mode
class J PA operating at a center frequency of 850 MHz

The configuration of the testbench was:

• 31 dBm output power characterized by 3.5 dB of gain compression

• 5G-NR signal under test with 20 MHz of bandwidth, 30 kHz carrier separation and 92.16 MHz of
sampling rate.
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Figure 4.36 Testbench for the first esperiment.

• 5500 signal samples used for model identification, which corresponds whith a µBIC = 0.0073 dB

All the setup is shown in Figure 4.36.
The optimum models for both HC and DOMP were used to generate a predistorted signal, whose lineariza-

tion performance and power spectral density (PSD) are shown in Table 4.1, respectively. The effect of both
techniques is evidenced by a reduction of the in-band distortion, achieving an enhancement of over 20 dB in
NMSE and an error vector magnitude (EVM) of about 1% in the linearized signal. The adjacent channel
power ratio (ACPR) improvement is illustrated by the decrease in spectral regrowth, achieving a level of
below -52 dB in all the linearized cases. Note that the power added efficiency (PAE) of the PA is the same
with and without DPD, which confirms that DPD techniques are capable of reducing nonlinearity while still
keeping the same level of power efficiency.
These results can be seen graphically in Figure 4.37.
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Figure 4.37 Normalized power spectral density of the PA output without DPD and with DPD regressed witht
the number of coefficients indicated by the BIC.
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Table 4.1 Measured performance in terms of NMSE, ACPR, EVM and number of coefficients for the PA
with and without DPD.

NMSE ACPR -1/+1 EVM Number PAE

Experiment (dB) (dBc) (%) of coef. (%)

w/o DPD -19.5 -29.1 / -27.0 8.6 - 24

HC DPD -41.4 -53.4 / -52.8 1.0 206 24

DOMP DPD -41.5 -53.8 / -53.1 1.1 120 24





5 Conclusion and Future Research Lines

To write well, express yourself like the common people, but think
like a wise man.

Aristotle

An extensive analysis of the application of Hill Climbing Heuristic to digital predistortion has been
presented in this work [2]. The exhaustive search algorithm has honoured its name the HC algorithm has
demonstrated to be heavy in terms of computational load. Very long simulations have been done with not
too explanatory results. Its implementation has been also complicated, when other algorithms such as the
DOMP [20] can be much more straightforward.
However, experimental results helped recognizing the utility of the structures obtained by the HC when

compared with no DPD and the DOMP, although the complexity of the structure of this second algorithm is
more reduced.

More research must be done about limited-complexity HC algorithms where the main focus should be on
reducing the time of calculation needed to find the fittest model structure, as well as testing a wider range of
stopping rules which could point to the appropriate criteria for this type of DPD model search.
In conclusion, this work should be considered an icebreaker in this area of study. Future research may

find interesting to compare the HC algorithm discussed in this dissertation with genetic algorithms and other
applications of machine learning to DPD.
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6 Codes

Code 6.1 Main function of the algorithm, where the number of samples and the initial model are selected..

hold off, close all, clear all;

load('medida_cantabria_31_precalentamiento.mat')

x = xdpd-mean(xdpd);

y = ydpd-mean(ydpd);

n=0.225;

indices = sel_indices(x,y,n);

yp=y(indices);

xp=x(indices);

parameters=[1 1 1 1 1 1 1 1];

c=clock;

fecha=c(1)*10000+c(2)*100+c(3);

if c(4)==0

hora="00"+c(5);

elseif c(4)<10

hora="0"+((5)*100+c(5));

else

hora=c(4)*100+c(5);

end

HC_Algorithm(parameters,fecha,hora,xp,yp);

51
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Code 6.2 HC algorithm implementation. A model database matrix is used to hold all the unique model
structures calculated..

function HC_Algorithm(coefs,fecha,hora,xp,yp)

M=length(yp);

numIteraciones=1;

modelDB=[];

tic;

model.type = 'GMP';

model.extension_periodica = 0;

model.grafica = 0;

model.h = [];

model.calculo = 'pinv';

model.pe = 1;

model.dc = 0;

model.cs = 0;

model.nmax = 200;

Ka=coefs(1); La=coefs(2);

Kb=coefs(3); Lb=coefs(4); Mb=coefs(5);

Kc=coefs(6); Lc=coefs(7); Mc=coefs(8);

model.Ka=[0:Ka];

model.La=ones(size(model.Ka))*La;

model.Kb=[1:Kb];

model.Lb=ones(size(model.Kb))*Lb;

model.Mb=ones(size(model.Kb))*Mb;

model.Kc=[1:Kc];

model.Lc=ones(size(model.Kc))*Lc;

model.Mc=ones(size(model.Kc))*Mc;

[model,toc] = model_gmp(yp, xp, model);

modelDB(1,:)=[numIteraciones,Ka,La,Kb,Lb,Mb,Kc,Lc,Mc,model.numcoef,model.nmse,

HC_BIC_J(model.nmse,model.numcoef,M),toc];

modelDB_optimos=modelDB(1,:);

BM=modelDB(1,:);

while true

oldJ=BM(12);

[modelDB]=HC_Neighbors(model,modelDB,numIteraciones,yp,xp);

[BM_aux]=HC_BestJ(modelDB,numIteraciones);

if ~isempty(BM_aux)

BM=BM_aux;

modelDB_best_row=[numIteraciones,BM(2:13)];

modelDB_optimos=cat(1,modelDB_optimos,modelDB_best_row);
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newJ=BM(12);

model.Ka=[0:BM(2)];

model.La=ones(size(model.Ka))*BM(3);

model.Kb=[1:BM(4)];

model.Lb=ones(size(model.Kb))*BM(5);

model.Mb=ones(size(model.Kb))*BM(6);

model.Kc=[1:BM(7)];

model.Lc=ones(size(model.Kc))*BM(8);

model.Mc=ones(size(model.Kc))*BM(9);

end

if oldJ==newJ

break

end

numIteraciones=numIteraciones+1;

end

time=toc;

optimumModel=model;

disp("volcado de los modelos calculados en Excel.")

if length(modelDB(:,1))<100000

disp("modelDB cabe en un Excel");

writematrix(modelDB,"modelDB"+fecha+"_"+hora+".xls");

else

disp("modelDB NO cabe en un Excel");

end

writematrix(modelDB_optimos,"modelDB_optimos"+fecha+"_"+hora+".xls");

end
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Code 6.3 Function used to estimate all the possible neighbors of a designated model and add them to the
model database. Here is where the complexity delimitations are implemented..

function [modelDB]=HC_Neighbors(model,modelDB,numIteraciones,y,x)

MAXCOEF=80;

for i=-1:1

for j=-1:1

for k=-1:1

for l=-1:1

for m=-1:1

for n=-1:1

for o=-1:1

for p=-1:1

Ka=model.Ka(end) + i;

if Ka < 1

Ka=1;

elseif Ka>11

Ka=11;

end

La=model.La(end) + j;

if La < 1

La = 1;

elseif La>5

La=5;

end

Kb=model.Kb(end) + k;

if Kb < 1

Kb = 1;

elseif Kb>10

Kb=10;

end

Lb=model.Lb(end) + l;

if Lb < 1

Lb = 1;

elseif Lb>5

Lb=5;

end

Mb=model.Mb(end) + m;

if Mb<=Lb

Mb=Lb+1;

end

if Mb<1

Mb=1;

elseif Mb>4

Mb=4;

end

Kc=model.Kc(end) + n;

if Kc < 1

Kc = 1;

elseif Kc>10
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Kc=10;

end

Lc=model.Lc(end) + o;

if Lc < 1

Lc = 1;

elseif Lc>5

Lc=5;

end

Mc=model.Mc(end) + p;

if Mc<=Lc

Mc=Lc+1;

end

if Mc<1

Mc=1;

elseif Mc>4

Mc=4;

end

if Lb+Mb<Mc-1

Lb=Lb+1;

end

modelDB_row=[Ka,La,Kb,Lb,Mb,Kc,Lc,Mc];

NUMCOEF=(Ka+1)*(La+1)+Kb*(Lb+1)*Mb+Kc*(Lc+1)*Mc;

if NUMCOEF<=MAXCOEF

if ~any(ismember(modelDB(:,2:9),modelDB_row,'rows'))

model2.type = 'GMP';

model2.extension_periodica = 0;

model2.grafica = 0;

model2.h = [];

model2.calculo = 'pinv';

model2.pe = 1;

model2.dc = 0;

model2.cs = 0;

model2.nmax = 200;

model2.Ka=[0:Ka];

model2.La=ones(size(model2.Ka))*La;

model2.Kb=[1:Kb];

model2.Lb=ones(size(model2.Kb))*Lb;

model2.Mb=ones(size(model2.Kb))*Mb;

model2.Kc=[1:Kc];

model2.Lc=ones(size(model2.Kc))*Lc;

model2.Mc=ones(size(model2.Kc))*Mc;

[model2,toc] = model_gmp(y, x, model2);

modelDB_row=[numIteraciones,Ka,La,Kb,Lb,Mb,Kc,Lc,Mc,model2.

numcoef,model2.nmse,HC_BIC_J(model2.nmse,model2.numcoef,

length(y)),toc];

modelDB = cat(1,modelDB,modelDB_row);

end

end
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end

end

end

end

end

end

end

end

end
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Code 6.4 Function which calculates the JBIC for every target model structure..

function [J]=HC_BIC_J(Yn,Rn,M)

mu=(10/M)*log10(2*M);

J=Yn+mu*Rn;

end
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Code 6.5 Function which searches for the best JBIC of every iteration..

function [bestModel]=HC_BestJ(modelDB,numIteraciones)

modelDB_J=[];

for i=1:length(modelDB(:,12))

if modelDB(i,1)==numIteraciones

modelDB_J=cat(1,modelDB_J,modelDB(i,:));

end

end

if ~isempty(modelDB_J)

[~,ind]=min(modelDB_J(:,12));

bestModel=modelDB_J(ind,:);

else

bestModel=[];

end

end
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