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Abstract— Memristive devices are a promising technology to 

implement dense learning synapse arrays emulating the high 

memory capacity and connectivity of biological brains. Recently, 

the implementation of STDP learning in memristive devices 

connected to spiking neurons have been demonstrated as well as 

the dependency of the form of the learning rule on the shape of 

the applied spike. In this paper, we propose a fully CMOS 

integrate-and-fire neuron generating a precisely shaped spike 

that can be tuned through programmable biases. The 

implementation of STDP learning is demonstrated through 

electrical simulations of a 4x4 array of memristors connected to 

4 spiking neurons. 

I. INTRODUCTION

Human brains are highly-parallel systems composed of 
about 10

10
 neurons, where each neuron is connected to 10

3
-10

4
 

other neurons through learning connections or synapses.  This 
huge parallel capacity and learning capability helps in making 
biological brains outperform the most modern supercomputing 
systems when cognitively processing and learning sensory 
data coming from the real world. Emulating the biological 
brains unique capability to extract and integrate vast amounts 
of sensory stimuli into meaningful categorizations has been a 
subject of intense research. 

However, there are several major unsolved challenges 
when trying to build brain-inspired artificial computing 
systems as their massive parallelism, massive 
interconnectivity as well as the plasticity of the 
interconnections.  

  Recently, scalable systems based in the modular 
interconnection of neuron populations through address-event-
representation links have been reported [1]-[4] as well as other 
approaches based on building large neuron populations in a 
wafer scale integration [5]. However, the limited connectivity 
imposed by the 2-dimensional nature of CMOS devices as 
well as the difficulty in implementing CMOS dense analog 
plastic devices limit the performance of these systems. 

In this context, two terminal memristive devices exhibiting 
non-volatile continuous memory have appeared as a promising 
technology to implement dense arrays of plastic synaptic 
devices. It has been demonstrated that these devices when 
connected with spiking neurons exhibit biological spike-
timing-dependent-plasticity (STDP) type of learning [14]-[16]. 
The use of memristors as dense synaptic plastic devices would 

allow the implementation of large scale brain inspired 
computing systems.  

In this paper, we propose hybrid architectures composed of 
CMOS spiking neurons combined with memristive devices 
arrays. The shape of the pulses generated by the CMOS 
neurons can be programmed allowing tuning and manipulating 
the STDP learning rules [14]-[16]. The functionality of the 
proposed circuits is demonstrated through circuit level Spectre 
simulations. 

II. STDP/ANTI-STDP

Spike-time-dependent-plasticity is a neural learning 
mechanism originally postulated [6] in the context of artificial 
machine learning algorithms (or computational neuroscience) 
exploiting spike-based computations (as in brains). It has been 
proven successful to learn hidden spiking patterns [7] or to 
perform competitive spike pattern learning [8]. Astonishingly, 
experimental evidences of biological STDP have later been 
reported by several neuroscience groups worldwide [9]. Let us 
call w the synaptic weight connection between two spiking 
neurons (the pre-synaptic neuron and the post-synaptic 

neuron). In STDP the change in synaptic weight ∆w is

expressed as a function ξ of the time difference ∆T between
the post-synaptic spike at tpos and the pre-synaptic spike at tpre. 
Fig. 1(a) illustrates the situation where the pre-synaptic spike 

occurs before the post-synaptic spike, thus ∆T is positive,
whereas Fig. 1(b) illustrates the situation where the post-
synaptic spike occurs before the pre-synaptic spike, thus 

yielding a negative ∆T. Fig. 2 plots experimental data from Bi
and Poo [9] and the shape of the interpolated STDP function. 

Specifically, ∆w = ξ(∆T), with ∆T = tpos - tpre . For positive ∆T

there will be a potentiation of synaptic weight ∆w > 0, which

will be stronger as |∆T| reduces. For negative ∆T there will be

a depression of synaptic weight ∆w < 0, which will be stronger

Fig. 1. Pre a Post Synaptic Membrane Voltages for the situations of (a) 
Positive ∆T and (b) Negative ∆T. Voltage VMR is the difference between
post-synaptic membrane voltage and pre-synaptic membrane voltage 
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Fig. 2. STDP characterization in biological synapses. Vertical axis is 
synaptic strength change and horizontal axis is time delay between pre- and 

post-synaptic spikes 



as |∆T| reduces. Bi and Poo concluded that they had observed

an asymmetric critical window for ∆T of about 40-80ms for

synaptic modification to take place. Mathematically, this 

ξ(∆T) STDP learning function is described by computational

neuroscientists as 







<∆−

<∆
=∆ −

+

∆−−

∆−+

0

0
)(

/

/

Tifea

Tifea
T

T

T

τ

τ

ζ

where a
+
 and a

-
 are parameters controlling the 

maximum learning rate, and τ+
 and τ-

 define the time

extension of the learning window.  
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III. MEMRISTORS AND STDP

Memristance has been recently demonstrated in nanoscale 
two-terminal devices, such as certain titanium-dioxide [10]-
[11] and amorphous Silicon [12] cross-point switches and
BFO materials [17]. Memristance arises naturally in
nanoscale devices because small voltages can yield enormous
electric fields that produce the motion of charged atomic or
molecular species, changing structural properties of a device
(such as its conductance) while it operates. In this paper we
will restrict our discussion to voltage-controlled two-terminal
passive memristors of the form [13]
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where G is its (nonlinear) conductance and w is some 
structural parameter of the device that controls directly its 
conductance. In general, we may assume that G is 
monotonically increasing with w. In memristive nanoscale 
devices, function f may describe ionic drift under electric 
fields. Although a linear dependence of f with voltage vMR 
yields memristive behavior [10], it is more realistic for f to 
grow exponentially and/or include a threshold barrier vth, as is 
shown in Fig. 3(b). Fig. 3(a) shows two possible symbols for 
the memristor two-terminal passive device. Note that it is an 
asymmetric device, and hence its polarity needs to be 
indicated explicitely in the symbol: an increase of vMR beyond 
threshold vth will produce an increase of w (and G). By turning 
the memristor upside-down, the same increase of vMR would 
produce a decrease of w (and G). 
As demonstrated in [14]-[15], when a memristor is stimulated 
with pre-synaptic and post-synaptic spikes as shown in Fig. 1, 
according to function f in Fig. 3(b), weight update will take 
place only if vMR exceeds threshold vth, as indicated by the red 
shaded areas in the bottom plot of Fig. 1. By integrating the 
bottom equation in eq. (2) we can compute the weight update 

∫ ∆=∆∆ dtTtvfTw MR )),(()(  (3)

which is the area of the red shaded regions in Fig. 1 previously 
amplified exponentially through function f( ). Positive areas 

(above vth , when ∆T > 0) yield increments for w (∆w > 0),

while negative areas (below -vth , when ∆T < 0) result in

decrements for  w (∆w < 0). As |∆T| approaches zero, the peak
of the red area in vMR is higher. Since this peak is amplified 
exponentially, the contribution for incrementing/decrementing 

w will be more pronounced as |∆T| is reduced. It follows

indeed the same behavior of the interpolated STDP function ξ
obtained by Bi and Poo from physiological experiments, 
shown in Fig. 1(a). Consequently, this parameter w can be 
identified with the synaptic weight in the neural connections 
with a biological STDP-type learning rule defined in the 
previous section. 

As can be deduced form equation (3), the shape of the 
spike strongly influences the shape of the resulting STDP 
function [15]-[16]. Fig. 4(b) illustrates the STDP learning 
function computed for the spike shape shown in Fig. 4(a) 
using equation (3).  As can be observed, for this spike shape, 
the STDP learning rule closely resembles the biological STDP 
function shown in Fig. 2(b).  

IV. CMOS IMPLEMENTATION OF THE SPIKING NEURON 

Synchronous multi-phase memristive STDP learning 
architectures have been proposed in the literature [18]. In this 
paper, we use an alternative fully asynchronous structure 
composed of memristors and CMOS spiking neurons [14]- 
[16]. 

We first need a neural circuit that integrates spikes until a 
threshold is reached. At that moment, it should provide a spike 
of the desired shape. A possible schematic diagram for a leaky 
integrate-and-fire (I&F) neuron block is shown in Fig. 5. The 
neurons need to include a current summing and sinking input 
terminal so that in the absence of spike output the integral of 
input current spike signals can be computed, while 
maintaining the input node tied to a fixed voltage. This can be 
done by using an integrator with a clamped voltage input. The 

Fig. 3. (a) Memristor symbols and (b) typical characteristic function f(vMR) 
with exponential growth beyond a threshold Fig. 4. (b) Resulting STDP function ξ(∆T) for the action potential shape

shown in (a). 

Fig. 5. Proposal of  I&F neuron circuit implementation for memristance 
compatible STDP fully asynchronous learning system 



output of this accumulated integral Vint is compared against a 
reference VREF. If this reference is reached, the comparator 
output will trigger a spike generation circuit, which provides 
the output spike of the neuron. During spike generation, the 
input opamp is configured as a voltage buffer, thus copying 
the spike waveform generated by the spiking block at output 
node Vout to the neuron input node. An attenuated version of 
the spike is fed forward to the output of the neuron Vpre(t) 

=αpreVout(t). During the whole time of the spike (typically in
the order of 20-100ms) the neuron is not integrating 
(computationally inactive). This time is also called “refractory 

time”. During the absence of spike output, the spike generation 
circuit provides a constant voltage Vrest. 

For the Spike Circuit in Fig. 5, an analog circuit can be 
devised that generates a specific action potential shape with 
some tunable parameters. Our proposed CMOS 
implementation of a spike circuit generating programmable 
spikes is shown in Fig. 6. This block generates a waveform 
whose shape is depicted in Fig. 4(a). In the proposed 
implementation, the main characteristics of the shape 
(duration of the positive pulse Thigh, duration of the tail pulse 
Ttail, voltage level of the positive pulse Vhigh, lowest voltage 
level of the tail pulse Vlow, reference voltage level of the 
resting neuron Vrest) are fully programmable through current 
and voltage biases.  

The input to the spiking block (shown in Fig. 6) Vcomp is 
the output of the comparator block of the I&F neuron shown 
in Fig. 5. The spiking block generates two outputs: an analog 
voltage at terminal Vout, and a digital control signal Vsw. When 
the input voltage Vcomp  gets activated (logic high) the spiking 
circuit generates an output signal at terminal Vout which has 
the shape shown in Fig. 4(a). The additional digital output 
voltage Vsw generates a pulse that activates the reset switch in 
Fig. 5 during the whole duration of the spike [15], as well as 
latches the input signal during the spiking time. As can be 
observed in Fig. 6, the designed spiking block is composed of 
5 sub blocks: an input latch that latches the output of the input 
comparator during the whole duration of the generated spike, 
two monostables, the tail voltage ramp generator and the 
switch control pulse generator to generate the digital control 
output Vsw. The monostable blocks are able to generate two 
matched pulses of high voltage Vhigh and controllable duration. 
The first monostable has been modified so that its low voltage 
level is controlled by the tail voltage ramp generator. The 

second or auxiliary monostable is used to know the time to 
initiate the generation of the pulse tail. The switch control 
pulse generator initiates an active pulse Vsw to control the reset 
switch when a high pulse is produced in the auxiliary 
monostable and uses the end of the tail voltage ramp to 
terminate the pulse Vsw. The pulse at Vsw is used also to control 
the input latch keeping it opaque during the whole duration of 
the output pulse.  Its functionality is demonstrated through 
electrical simulations. 

The correct operation of the spiking block has been 
verified through simulations. As an illustration, we show in 
Fig. 7 simulation results of the spikes generated at output Vout 
with different values of the current biases Ih and It. In these 
simulations, the voltage values are set to VREF=1.65V, 
Vrest=1.65V, Vhigh=2.5V, Vlow=1V. In Fig. 7 (a) the values of Ih 
are 10pA, 100pA, and 1nA and current It=1pA. For Fig. 7(b) 
Ih=5pA and current It is set to 1pA, 10pA, and 100pA. 

V. SIMULATIONS OF HYBRID NANO-CMOS ARRAYS

In this section we demonstrate that a neural array 
composed of a matrix of 2-terminal memristive synaptic 
nanodevices interconnected to the spiking CMOS neurons 
proposed in section IV, exhibit STDP learning behaviour. The 
STDP learning of a synaptic array of memristive devices and 
CMOS spiking neurons has been verified through simulations. 
The schematic of the simulated array is shown in Fig. 8(a). An 
array of 4x4 synaptic elements is connected to 4 CMOS 
spiking neurons. The input spikes that would be generated by 
spiking neurons of a previous layer are distributed through the 
vertical lines, while the output spikes generated by the current 
neurons are distributed through horizontal lines. The post-

Fig. 6. Schematic of the Spiking Block 

(a)

(b)

Fig. 7. Programmable Spike Voltage generated by the proposed CMOS 
Spiking Block (a) for different values of current Ih, and (b) for different values 

of current It. 



synaptic voltages Vpos are kept at the resting voltage Vrest 
through the virtual ground effect of the high-gain opamp (see 
Fig. 5) when no spike is generated by a neuron. Each time a 
presynaptic pulse Vpre arrives through a vertical line, a current 
is integrated in each capacitor during the duration of the 
presynaptic pulse. As a result of each presynaptic pulse Vpre, 
the voltage at the input of each spiking block 
increases/decreases an amount that depends on the current 
value of the coupling memristance and the particular shape of 
the presynaptic pulse. During this time no weight updating 
should occur, thus the voltage difference Vpre-Vrest must be 
kept below the learning threshold voltage vth (see Fig. 1(b)) of 
the memristors. When the integrated voltage of any of the 
neuron capacitors reaches its threshold VREF (see Fig. 5) a 
postsynaptic spike is generated by the corresponding neuron. 
The voltage difference of the memristive device should go 
above the learning threshold vth only when a pre- and post-
synaptic spike overlap in time. In order to implement an STDP 
learning rule, depending on the delay between the presynaptic 
spike and the postsynaptic spike, the corresponding weight of 
the coupling memristance should be updated, producing an 
increase of the resistance if the presynaptic spike goes after 
the postsynaptic spike, and a decrease of the resistance if the 
presynaptic spike comes right before the postsynaptic spike.  

We have verified through Spectre simulations that the 
operation of the CMOS spiking blocks connected to the 
synaptic memristors in the 4x4 array shown in Fig. 8(a) 
produces a correct STDP learning. The threshold considered 
for the memristor device is vth =1V. In order to produce 
correct STDP learning for these memristors we set the voltage 
levels of the spikes generated by the spiking block to the 
following values: VREF=2V, Vrest=1V, Vhigh=2V, Vlow=0.5V. 

The results of the simulations are shown in Fig. 8(b). In this 
simulation we apply presynaptic spikes to the first and second 
columns of synapses while the third and fourth columns are 
tied to voltage Vrest so that no learning occurs in the 
memristors located in those columns. The presynaptic spikes 
are applied with a period of 200ms. The evolution of the 
memristor weights is plotted in Fig. 8(b). As can be observed, 
the weights of the memristors located in the first and second 
column do not change, as no presynaptic pulse is applied to 
those columns. However, a change in the weights of the 
memristors located in the third and fourth columns ocurrs 
when pre- and post- synaptic spikes overlap.  

VI. CONCLUSIONS

A CMOS spiking neuron generating tunable spike 
waveforms has been designed. The STDP learning of 
memristive devices connected to that neuron has been verified 
through simulations of a 4x4 array of memristors connected to 
4 spiking neurons. The next step will be to fabricate the 
proposed neuron and the experimental interaction with 
memristive devices. 
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