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Abstract—Neuromorphic Computing or Spiking (also called 

Event-Driven) Neural Systems are becoming of high interest as 

they potentially allow for lower power hardware computing 
platforms, where power consumption is data driven. Traditional 
approaches (both in software and in hardware), which are not 

data driven, rely on generic system state updates, consuming a 
fixed amount of computing resources at each step, independent 

on the data itself. In neuromorphic spiking or (event-driven) 
computing systems power is consumed (in principle) if new data 

is transferred, either at the system input, system output, or 

internally between computing nodes. One such neuromorphic 
event-driven computing platform is the scalable SpiNNaker 

system, which is aimed for a million ARM core platform, capable 
of emulating in the order of a billion neurons in real time. An 

important practical drawback of the platform is the long time it 
takes to download to the hardware a given computational 
architecture. This step has to be repeated even if one wants to 

update a set of parameters. Here we present a method for 
updating internal parameters without downloading again the full 

architecture, by adding special neurons into the computing 
architecture which when they spike change given parameters. 
This allows to download the computing architecture only once to 

the SpiNNaker platform, and then take advantage of its highly 
efficient communication network to command specific parameter 

changes. This allows for intensive parameter searches in a more 
efficient manner. 
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I. ����������	���
This paper tackles the problem of performing extensive 

parameter searches or obtaining the optimum parameters in 
neural systems implemented on the SpiNNaker hardware 
platform [1]. Prior reported parameter optimizations of spiking 
convolutional networks using software simulators [2], required 
several thousand of simulated annealing iterations to find an 
optimum set of about 10 network parameters in a 4-layer 
ConvNet (convolutional neural network). Similar ConvNets 
have been implemented on the SpiNNaker platform by 
tweaking the official software release to support weight 
sharing topologies optimized for ConvNets [3], or by simply 
replicating all synapses that use the same weight without 
tweaking the official software. In both cases, the software 
requires an important amount of time to “compile” and 

download the network with all its parameters, described in a 
high level abstract language (such as PyNN [4]), to the multi-
core hardware. Depending on the complexity of the network, 
this time may range from several minutes to hours. Once 
compiled, the network runs then in real time a specific 
simulation. If one wants to change just one parameter in the 
network, it is necessary to recompile and download it again. 

In this paper we present a method for avoiding recompiling 
the full network every time. It consists of defining a set of 
special types of neurons. These neurons can be stimulated 
directly from the outside, this is, they receive directly external 
dedicated input spikes. Also, these neurons connect through 
special synapses to other neurons in the network, but they do 
not actuate on them like typical neurons (this is, they 
increase/decrease their internal state through weighted 
synaptic connections). Instead, they change specific 
parameters of the destination neurons. 

Section 2 briefly describes the steps followed by the 
SpiNNaker platform to simulate a specific design described in 
PyNN. In Section 3 we explain the proposed approach to 
modify neuron parameters during the simulation time and 
show an example using real DVS (Dynamic Vision Sensor 
[5]-[7]) recording data and providing time and classification 
accuracy results. Section 4 presents the conclusions. 

II. ����
�����������������

���������������������	����
The SpiNNaker platform is a bioinspired neuromorphic 

hardware based on spike communication and massively 
parallel computation [1]. The communication infrastructure is 
optimized for spike communication. The SpiNNaker hardware 
together with the SpiNNaker software allow for a fast and 
easy design and simulation of different neural networks. The 
SpiNNaker software can be divided in two parts. One that runs 
in the SpiNNaker chips and another that runs in the host 
machine. The main interface to communicate the host machine 
with the SpiNNaker chips is via Ethernet.  

Using PyNN description language [4], the user can specify 
the neural network structure (populations, synapses, 
projections, neuron models, etc) and the SpiNNaker software 
configures the routers, splits populations and downloads the 
design using Ethernet to the SpiNNaker hardware. Next, it 



runs the simulation for a specific time. During the simulation, 
the SpiNNaker chips store the neuron output spikes or/and 
neuron membrane voltages internally. When the simulation 
finishes, it can show the results on the screen or copy them to 
files. However, if the simulation time is too long, it can result 
in a lack of memory error. Another option for collecting the 
results is to activate live output packets. In this case, the 
SpiNNaker software can send the spikes out of the SpiNNaker 
board to a host computer using the Ethernet connection. 
Additionally, it can also export spikes to another hardware 
using available SATA ports [8]. 

The parameters of the neurons have to be defined along 
with the neural network design. Therefore, every time the user 
modifies the neuron parameter the design has to be changed. 
Finding the neuron parameter configuration that obtains the 
best performance for a neural network is a difficult task. The 
common procedure is to use automatic parameter search or 
some optimization algorithm (in this case we use basin-
hopping from the python optimize packet [9]). The neural 
parameters optimization process using the default SpiNNaker 
software would be as follows. First, the user configures the 
callbacks and ports to receive UDP messages with the output 
spikes. Then, the user specifies the design and starts the 
SpiNNaker simulator. The simulator will download the design 
to the SpiNNaker hardware and launch the simulation. When 
the simulation is running, the user can start an external event 
generator that feeds physical events to the network (for 
example, from a DVS spiking sensor or from an event 
playback PCB [10]), and receive the output spikes via UDP 
communication. Once the SpiNNaker simulation finishes, the 
optimization algorithm computes a given cost function and if 
the result is not acceptable, it generates a new set of 
parameters. This set of new parameters is integrated onto the 
network description, which needs to be compiled and 
downloaded again to the SpiNNaker hardware.  

In our case we used the poker card recognition 4-layer 
ConvNet presented elsewhere [2] as a benchmark. In this case, 
the compile and downloading time to the SpiNNaker platform 
was about 145 seconds. If the optimization process needs to 
iterate 2000 cycles it will spend at least 80 hours downloading 
the design to the SpiNNaker board (which is longer than what 
it took to optimize the original software simulations [2]). 

III. �������������	��	�����������

A. Implementation

We define a new “config_neuron” capable of receiving
multi-cast packages (MCP) directly from the host computer 
via Ethernet. This “config_neuron” is connected through new 
“config_synapses” to normal neurons in the computational 
network. This is illustrated in Fig.1. Using this approach it is 
possible to add a 32-bit or 16-bit payload to the MCP so that 
the payload encodes the neuron parameters to be changed and 
the new values to be assigned. Depending on the number of 
neuron parameter to be modified during the simulation time, 
there will be more or less bits of accuracy to represent the 
value of the neuron parameter. For example, using a 32-bit 
word of payload, to change 8 neuron parameters, 3 bits can be 

used to encode the parameter and 29 bits to represent the 
parameter value. The “config_neuron” can be connected to a 
single neuron or a population of neurons. All the neurons 
connected to the “config_neuron” will decode the incoming 
MCP packet and  change its parameters. Therefore, if we want 
to change at the same time all the neuron parameters of a 
layer, we will need a “config_neuron” for each layer and this 
will be the extra overhead of the neural network. 

Fig. 1. “Config_neuron” interfacing with host computer and connected to a 
population 

We used the SpiNNaker software version 2015.005, which 
did not support MCP with payload. Therefore, some software 
changes were done to adapt it. In particular, when a MCP with 
payload arrives to the core, it has to decode the neuron 
parameter to change, and call a specific function to change 
that parameter. 

B. Single neuron behaviour

This section explains an example using a single neuron as
shown in Fig. 2. Pop_1 is an IF_curr_exp population of 1 
neuron connected to a spikes source that generates 1 spike 
every 10ms during 10s. Equation (1) describes the 
IF_curr_exp neuron model. 

τm(dVm/dt) = (EL-Vm) + Rm I(t) (1) 

where τm is the membrane time constant, EL is the resting 
potential, Vm is the membrane voltage, Rm is the membrane 
resistance, and I represents the input current from the 

synapses. When Vm  reaches a threshold Vθ , it is reset to EL 
and the neuron remains inactive during a refractory time τref . 

For our purpose, we are interested in changing three 

neuron parameters from the PyNN front-end: τref, τm, and Vθ. 
In the proposed example a “config_neuron” is used to 
interface Pop_1 with the host computer. 

Fig. 2. Outline of the configuration of a single neuron parameters example 



Fig. 3(a) shows the membrane voltage of a 10s simulation 
using the default SpiNNaker software and Fig. 3(b) shows the 
effect of changing the neuron parameters during the 
simulation time of the same experiment with the adapted 
software. The blue line in the figure represents the membrane 
voltage and the red stars correspond to output spikes. 

a) b)

Fig. 3. Single neuron simulation result a) without changing the neuron 

parameters, b) changing the neuron parameters 

Fig. 4 shows zoomed-in details of the times where 
parameters change during run time. At millisecond 2000, the 
host computer sends an MC packet with payload to change τref 
to a longer time (see Fig. 4(a)). At millisecond 4000 the host 
computer changes τm increasing the value and therefore 

decreasing the leakage (see Fig. 4(b)). At millisecond 6000 Vθ 
is changed from 40mV to 20mV (see Fig. 4(c)). 

(a) (b)

(c)

Fig. 4. Details of the changes in the (a) τref , (b) τm and (c) Vθ during run time 

C. Optimization of the Poker card recognition ConvNet

Fig. 5 shows the 4 layer poker symbol recognition
ConvNet used for parameter optimization [2]. We want to 

optimize parameters τref, τm, and Vθ for maximum recognition. 
All neurons in the same layer share the same parameter values. 
For the 1st and 4th layers τref = 0, thus only 10 parameters need
optimization. The system is set up with just four 
config_neurons, as shown in Fig. 5. All the neuron parameters 
of a layer will be changed at the same time. In this case, 
sending a multicast (MC) message with payload and KEY = 
key0, will change the parameter encoded in the payload for all 
the neurons of layer C1. If the message KEY is key1, the 
corresponding parameter of all the neurons of layer C3 will be 
changed, and so on. The overall optimization procedure 
(which uses the basin-hopping algorithm of the python 

package Optimize [9]) is depicted in Fig. 6. The network is 
downloaded once to the SpiNNaker hardware and a spike 
burst stimulus is presented each iteration, evaluating a 
“recognition accuracy”. A set of new parameters are sent 
through MCP, and this is iterated until convergence. 

Fig. 5. Poker card recognition ConvNet with the addition of the 
“config_neurons” 

Fig. 6. Optimization Procedure 

Fig. 7 shows the experimental setup. The event generator 
stores DVS recordings to be used as the stimulus. It is 
connected via an adapter pcb to a commercial RaggedStone2 
board, which holds a Spartan6 FPGA programmed to convert 
DVS spikes into SpiNNaker events format, sending them to 
the parallel port of a 48-chip SpiNNaker board. Additionally, 
the Spinnaker board is connected via Ethernet to the host 
computer for receiving MC packets for the config_neurons. 

The experiments were done using the Poker-DVS dataset 
[2], [11], where 40 card symbols are shown in about one 
second. The recognition was measured counting the number of 
symbols correctly recognized. Thus, 100% of recognition 
performance corresponds to 40 cards correctly recognized. 
The experiments were conducted by slowing down the input 
event stimulus at different slow-down rates SR = 1 (real time), 
2, 5, 10, 50, 100. When using the proposed method, the overall 
optimization time is given by 



Fig. 7. Hardware setup 

Toptim = Tdl + niter (Tov + SR Tsim) (2) 

where Tdl is the download time, 145s in this case, niter is the 
number of optimization iterations, Tov is the overhead time 
required in each iteration to launch the stimulus data and 
collect the output and compute the new parameters, SR the 
slow-down rate, and Tsim is the real time simulation latency on 
the SpiNNaker platform, 1s in this case. On the other hand, 
when using the conventional approach, the optimization time 
would be given by 

Toptim =  niter (Tdl + Tov + SR Tsim) (2) 

Table 1 displays the results obtained when using both 
approaches. 

TABLE I. NUMBER OF ITERATIONS AND OPTIMIZATION TIMES FOR 

DIFFERENT SLOW-DOWN RATES SR 

SR niter Tov 

Toptim  with 

proposed 

approach in 

seconds (and in 

hours) 

Toptim  with 

standard 

software in 

seconds (and in 

hours) 

1 2160 14 32749 (9) 345600 (96) 

2 1584 14 23952 (6) 253440 (70) 

5 1130 15 23008 (6) 186450 (52) 

10 138 15 3689 (1) 23460 (6) 

50 1500 35 128068 (35) 345000 (95) 

100 1440 41 203678 (56) 411840 (114) 

D. Testing optimized parameters in an application on

SpiNNaker

The optimized neuron parameters obtained from the
optimization process at different slow-down rates were then 
used to run separate simulations, repeated 30 times, to 
measure the recognition performance and its standard 
deviation. Since SpiNNaker is an asynchronous network of 
synchronized cores with intentional timing jitters between the 
cores, when repeating a simulation the results may differ. Fig. 
8 shows the recognition performance at the different slow-

down rates. The error bar indicates the standard deviation. As 
can be seen, recognition improves with larger slow-down 
rates. With SR = 1, the recording plays back at real time with 
an input stimulus event rate of about 200Keps (kilo events per 
second). The SpiNNaker hardware updates all neural states 
using a 1ms time step. This time step implies that all the 
events that arrive to a neuron during the same 1ms will at the 
most generate one output spike. Therefore, when slow-down 
rate is 1, there are many input events coming in during the 
same millisecond (200 events for the rate of 200Keps) and 
significant information is lost degrading recognition accuracy. 
By increasing SR, fewer events are received during the same 
millisecond and therefore less information is lost, improving 
recognition. Recognition reaches its top with a slow-down rate 
of 50. 

Fig. 8. Recognition capability at different slow-down rates 

IV. �������	����
An intrinsic approach has been proposed for updating 

neural population parameters on the SpiNNaker platform 
during run time. This allows for more efficient parameter 
searches and optimizations. Experimental tests have been 
performed using as benchmark a previously reported spiking 
ConvNet for high speed DVS-recorded poker symbol 
recognition. An improvement in optimization speeds of over a 
factor 10 has been observed. Further future improvements 
might be possible by investigating ways to reduce the 
overhead times required to trigger the stimuli and to process 
the collected outputs every cycle. 
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