
An Intrinsic Method for Fast Parameter Update on the

SpiNNaker Platform

M. Soto, T. Serrano-Gotarredona, and B. Linares-Barranco

Instituto de Microelectronica de Sevilla (IMSE-CNM)

CSIC and Univ. de Sevilla

Sevilla, Spain

bernabe@imse-cnm.csic.es

Abstract—Neuromorphic Computing or Spiking (also called

Event-Driven) Neural Systems are becoming of high interest as

they potentially allow for lower power hardware computing
platforms, where power consumption is data driven. Traditional
approaches (both in software and in hardware), which are not

data driven, rely on generic system state updates, consuming a
fixed amount of computing resources at each step, independent

on the data itself. In neuromorphic spiking or (event-driven)
computing systems power is consumed (in principle) if new data

is transferred, either at the system input, system output, or

internally between computing nodes. One such neuromorphic
event-driven computing platform is the scalable SpiNNaker

system, which is aimed for a million ARM core platform, capable
of emulating in the order of a billion neurons in real time. An

important practical drawback of the platform is the long time it
takes to download to the hardware a given computational
architecture. This step has to be repeated even if one wants to

update a set of parameters. Here we present a method for
updating internal parameters without downloading again the full

architecture, by adding special neurons into the computing
architecture which when they spike change given parameters.
This allows to download the computing architecture only once to

the SpiNNaker platform, and then take advantage of its highly
efficient communication network to command specific parameter

changes. This allows for intensive parameter searches in a more
efficient manner.

Keywords—Neuromorphic Computing, Spiking Circuits,
SpiNNaker Platform, Event-Driven Computation, Addres-Event-

Representation (AER)

I. ����������	���
This paper tackles the problem of performing extensive

parameter searches or obtaining the optimum parameters in
neural systems implemented on the SpiNNaker hardware
platform [1]. Prior reported parameter optimizations of spiking
convolutional networks using software simulators [2], required
several thousand of simulated annealing iterations to find an
optimum set of about 10 network parameters in a 4-layer
ConvNet (convolutional neural network). Similar ConvNets
have been implemented on the SpiNNaker platform by
tweaking the official software release to support weight
sharing topologies optimized for ConvNets [3], or by simply
replicating all synapses that use the same weight without
tweaking the official software. In both cases, the software
requires an important amount of time to “compile” and

download the network with all its parameters, described in a
high level abstract language (such as PyNN [4]), to the multi-
core hardware. Depending on the complexity of the network,
this time may range from several minutes to hours. Once
compiled, the network runs then in real time a specific
simulation. If one wants to change just one parameter in the
network, it is necessary to recompile and download it again.

In this paper we present a method for avoiding recompiling
the full network every time. It consists of defining a set of
special types of neurons. These neurons can be stimulated
directly from the outside, this is, they receive directly external
dedicated input spikes. Also, these neurons connect through
special synapses to other neurons in the network, but they do
not actuate on them like typical neurons (this is, they
increase/decrease their internal state through weighted
synaptic connections). Instead, they change specific
parameters of the destination neurons.

Section 2 briefly describes the steps followed by the
SpiNNaker platform to simulate a specific design described in
PyNN. In Section 3 we explain the proposed approach to
modify neuron parameters during the simulation time and
show an example using real DVS (Dynamic Vision Sensor
[5]-[7]) recording data and providing time and classification
accuracy results. Section 4 presents the conclusions.

II. ����
�����������������

���������������������	����
The SpiNNaker platform is a bioinspired neuromorphic

hardware based on spike communication and massively
parallel computation [1]. The communication infrastructure is
optimized for spike communication. The SpiNNaker hardware
together with the SpiNNaker software allow for a fast and
easy design and simulation of different neural networks. The
SpiNNaker software can be divided in two parts. One that runs
in the SpiNNaker chips and another that runs in the host
machine. The main interface to communicate the host machine
with the SpiNNaker chips is via Ethernet.

Using PyNN description language [4], the user can specify
the neural network structure (populations, synapses,
projections, neuron models, etc) and the SpiNNaker software
configures the routers, splits populations and downloads the
design using Ethernet to the SpiNNaker hardware. Next, it

runs the simulation for a specific time. During the simulation,
the SpiNNaker chips store the neuron output spikes or/and
neuron membrane voltages internally. When the simulation
finishes, it can show the results on the screen or copy them to
files. However, if the simulation time is too long, it can result
in a lack of memory error. Another option for collecting the
results is to activate live output packets. In this case, the
SpiNNaker software can send the spikes out of the SpiNNaker
board to a host computer using the Ethernet connection.
Additionally, it can also export spikes to another hardware
using available SATA ports [8].

The parameters of the neurons have to be defined along
with the neural network design. Therefore, every time the user
modifies the neuron parameter the design has to be changed.
Finding the neuron parameter configuration that obtains the
best performance for a neural network is a difficult task. The
common procedure is to use automatic parameter search or
some optimization algorithm (in this case we use basin-
hopping from the python optimize packet [9]). The neural
parameters optimization process using the default SpiNNaker
software would be as follows. First, the user configures the
callbacks and ports to receive UDP messages with the output
spikes. Then, the user specifies the design and starts the
SpiNNaker simulator. The simulator will download the design
to the SpiNNaker hardware and launch the simulation. When
the simulation is running, the user can start an external event
generator that feeds physical events to the network (for
example, from a DVS spiking sensor or from an event
playback PCB [10]), and receive the output spikes via UDP
communication. Once the SpiNNaker simulation finishes, the
optimization algorithm computes a given cost function and if
the result is not acceptable, it generates a new set of
parameters. This set of new parameters is integrated onto the
network description, which needs to be compiled and
downloaded again to the SpiNNaker hardware.

In our case we used the poker card recognition 4-layer
ConvNet presented elsewhere [2] as a benchmark. In this case,
the compile and downloading time to the SpiNNaker platform
was about 145 seconds. If the optimization process needs to
iterate 2000 cycles it will spend at least 80 hours downloading
the design to the SpiNNaker board (which is longer than what
it took to optimize the original software simulations [2]).

III. �������������	��	�����������

A. Implementation

We define a new “config_neuron” capable of receiving
multi-cast packages (MCP) directly from the host computer
via Ethernet. This “config_neuron” is connected through new
“config_synapses” to normal neurons in the computational
network. This is illustrated in Fig.1. Using this approach it is
possible to add a 32-bit or 16-bit payload to the MCP so that
the payload encodes the neuron parameters to be changed and
the new values to be assigned. Depending on the number of
neuron parameter to be modified during the simulation time,
there will be more or less bits of accuracy to represent the
value of the neuron parameter. For example, using a 32-bit
word of payload, to change 8 neuron parameters, 3 bits can be

used to encode the parameter and 29 bits to represent the
parameter value. The “config_neuron” can be connected to a
single neuron or a population of neurons. All the neurons
connected to the “config_neuron” will decode the incoming
MCP packet and change its parameters. Therefore, if we want
to change at the same time all the neuron parameters of a
layer, we will need a “config_neuron” for each layer and this
will be the extra overhead of the neural network.

Fig. 1. “Config_neuron” interfacing with host computer and connected to a
population

We used the SpiNNaker software version 2015.005, which
did not support MCP with payload. Therefore, some software
changes were done to adapt it. In particular, when a MCP with
payload arrives to the core, it has to decode the neuron
parameter to change, and call a specific function to change
that parameter.

B. Single neuron behaviour

This section explains an example using a single neuron as
shown in Fig. 2. Pop_1 is an IF_curr_exp population of 1
neuron connected to a spikes source that generates 1 spike
every 10ms during 10s. Equation (1) describes the
IF_curr_exp neuron model.

τm(dVm/dt) = (EL-Vm) + Rm I(t) (1)

where τm is the membrane time constant, EL is the resting
potential, Vm is the membrane voltage, Rm is the membrane
resistance, and I represents the input current from the

synapses. When Vm reaches a threshold Vθ , it is reset to EL
and the neuron remains inactive during a refractory time τref .

For our purpose, we are interested in changing three

neuron parameters from the PyNN front-end: τref, τm, and Vθ.
In the proposed example a “config_neuron” is used to
interface Pop_1 with the host computer.

Fig. 2. Outline of the configuration of a single neuron parameters example

Fig. 3(a) shows the membrane voltage of a 10s simulation
using the default SpiNNaker software and Fig. 3(b) shows the
effect of changing the neuron parameters during the
simulation time of the same experiment with the adapted
software. The blue line in the figure represents the membrane
voltage and the red stars correspond to output spikes.

a) b)

Fig. 3. Single neuron simulation result a) without changing the neuron

parameters, b) changing the neuron parameters

Fig. 4 shows zoomed-in details of the times where
parameters change during run time. At millisecond 2000, the
host computer sends an MC packet with payload to change τref
to a longer time (see Fig. 4(a)). At millisecond 4000 the host
computer changes τm increasing the value and therefore

decreasing the leakage (see Fig. 4(b)). At millisecond 6000 Vθ
is changed from 40mV to 20mV (see Fig. 4(c)).

(a) (b)

(c)

Fig. 4. Details of the changes in the (a) τref , (b) τm and (c) Vθ during run time

C. Optimization of the Poker card recognition ConvNet

Fig. 5 shows the 4 layer poker symbol recognition
ConvNet used for parameter optimization [2]. We want to

optimize parameters τref, τm, and Vθ for maximum recognition.
All neurons in the same layer share the same parameter values.
For the 1st and 4th layers τref = 0, thus only 10 parameters need
optimization. The system is set up with just four
config_neurons, as shown in Fig. 5. All the neuron parameters
of a layer will be changed at the same time. In this case,
sending a multicast (MC) message with payload and KEY =
key0, will change the parameter encoded in the payload for all
the neurons of layer C1. If the message KEY is key1, the
corresponding parameter of all the neurons of layer C3 will be
changed, and so on. The overall optimization procedure
(which uses the basin-hopping algorithm of the python

package Optimize [9]) is depicted in Fig. 6. The network is
downloaded once to the SpiNNaker hardware and a spike
burst stimulus is presented each iteration, evaluating a
“recognition accuracy”. A set of new parameters are sent
through MCP, and this is iterated until convergence.

Fig. 5. Poker card recognition ConvNet with the addition of the
“config_neurons”

Fig. 6. Optimization Procedure

Fig. 7 shows the experimental setup. The event generator
stores DVS recordings to be used as the stimulus. It is
connected via an adapter pcb to a commercial RaggedStone2
board, which holds a Spartan6 FPGA programmed to convert
DVS spikes into SpiNNaker events format, sending them to
the parallel port of a 48-chip SpiNNaker board. Additionally,
the Spinnaker board is connected via Ethernet to the host
computer for receiving MC packets for the config_neurons.

The experiments were done using the Poker-DVS dataset
[2], [11], where 40 card symbols are shown in about one
second. The recognition was measured counting the number of
symbols correctly recognized. Thus, 100% of recognition
performance corresponds to 40 cards correctly recognized.
The experiments were conducted by slowing down the input
event stimulus at different slow-down rates SR = 1 (real time),
2, 5, 10, 50, 100. When using the proposed method, the overall
optimization time is given by

Fig. 7. Hardware setup

Toptim = Tdl + niter (Tov + SR Tsim) (2)

where Tdl is the download time, 145s in this case, niter is the
number of optimization iterations, Tov is the overhead time
required in each iteration to launch the stimulus data and
collect the output and compute the new parameters, SR the
slow-down rate, and Tsim is the real time simulation latency on
the SpiNNaker platform, 1s in this case. On the other hand,
when using the conventional approach, the optimization time
would be given by

Toptim = niter (Tdl + Tov + SR Tsim) (2)

Table 1 displays the results obtained when using both
approaches.

TABLE I. NUMBER OF ITERATIONS AND OPTIMIZATION TIMES FOR

DIFFERENT SLOW-DOWN RATES SR

SR niter Tov

Toptim with

proposed

approach in

seconds (and in

hours)

Toptim with

standard

software in

seconds (and in

hours)

1 2160 14 32749 (9) 345600 (96)

2 1584 14 23952 (6) 253440 (70)

5 1130 15 23008 (6) 186450 (52)

10 138 15 3689 (1) 23460 (6)

50 1500 35 128068 (35) 345000 (95)

100 1440 41 203678 (56) 411840 (114)

D. Testing optimized parameters in an application on

SpiNNaker

The optimized neuron parameters obtained from the
optimization process at different slow-down rates were then
used to run separate simulations, repeated 30 times, to
measure the recognition performance and its standard
deviation. Since SpiNNaker is an asynchronous network of
synchronized cores with intentional timing jitters between the
cores, when repeating a simulation the results may differ. Fig.
8 shows the recognition performance at the different slow-

down rates. The error bar indicates the standard deviation. As
can be seen, recognition improves with larger slow-down
rates. With SR = 1, the recording plays back at real time with
an input stimulus event rate of about 200Keps (kilo events per
second). The SpiNNaker hardware updates all neural states
using a 1ms time step. This time step implies that all the
events that arrive to a neuron during the same 1ms will at the
most generate one output spike. Therefore, when slow-down
rate is 1, there are many input events coming in during the
same millisecond (200 events for the rate of 200Keps) and
significant information is lost degrading recognition accuracy.
By increasing SR, fewer events are received during the same
millisecond and therefore less information is lost, improving
recognition. Recognition reaches its top with a slow-down rate
of 50.

Fig. 8. Recognition capability at different slow-down rates

IV. �������	����
An intrinsic approach has been proposed for updating

neural population parameters on the SpiNNaker platform
during run time. This allows for more efficient parameter
searches and optimizations. Experimental tests have been
performed using as benchmark a previously reported spiking
ConvNet for high speed DVS-recorded poker symbol
recognition. An improvement in optimization speeds of over a
factor 10 has been observed. Further future improvements
might be possible by investigating ways to reduce the
overhead times required to trigger the stimuli and to process
the collected outputs every cycle.

���������	
����

This work was supported in part by the EU H2020 grants
644096 “ECOMODE” and 687299 “NEURAM3”, by Flagship
grant “The Human Brain Project” FP7-604102, and by the
Spanish grant from the Ministry of Economy and
Competitivity TEC2015-63884-C2-1-P (COGNET) (with
support from the European Regional Development Fund).

����������

[1] S. B. Furber, F. Galluppi, S. Temple, and L. A. Plana, “The SpiNNaker
project,” Proc. IEEE, vol. 102, no. 5, pp. 652–665, 2014.

[2] J. A. Perez-Carrasco, B. Zhao, C. Serrano, B. Acha, T. Serrano-
Gotarredona, S. Chen, and B. Linares-Barranco, “Mapping from Frame-
Driven to Frame-Free Event-Driven Vision Systems by Low-Rate Rate-

Coding. Application to Feed Forward ConvNets,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 35, no. 11, pp. 2706–2719, 2013.

[3] T. Serrano-Gotarredona, B. Linares-Barranco, F. Galluppi, L. Plana, and
S. Furber, “ConvNets experiments on SpiNNaker,” Proc. - IEEE Int.
Symp. Circuits Syst., vol. 2015–July, pp. 2405–2408, 2015.

[4] Davison AP, Brüderle D, Eppler J, et al. PyNN: A Common Interface

for Neuronal Network Simulators. Frontiers in Neuroinformatics.
2008;2:11. doi:10.3389/neuro.11.011.2008.

[5] Lichtsteiner P., Posch C., Delbruck T. (2008). A 128 × 128 120dB
30mW asynchronous vision sensor that responds to relative intensity
change. IEEE J. Solid-State Circuits 43, 566–576.

[6] Posch, C., Matolin, D., and Wohlgenannt, R. (2011). A QVGA 143 dB
dynamic range frame-free PWM image sensor with lossless pixel-level

video compression and time-domain CDS. IEEE J. Solid State Circ. 46,
259–275.

[7] T. Serrano-Gotarredona and B. Linares-Barranco, "A 128x128 1.5%

Contrast Sensitivity 0.9% FPN 3us Latency 4mW Asynchronous Frame-

Free Dynamic Vision Sensor Using Transimpedance Amplifiers," IEEE
J. Solid-State Circuits, vol.48, No. 3, pp. 827-838, March 2013.

[8] A. Yousefzadeh, M. Jablonski, T. Iakymchuk, A. Linares-Barranco, A.
Rosado, L. A. Plana, S. Temple, T. Serrano-Gotarredona, S. Furber, and
B. Linares-Barranco, "On Multiple AER Handshaking channels over

High-Speed Bit-Serial Bi-Directional LVDS Links with Flow-Control
and Clock-Correction on Commercial FPGAs for Scalable Neurmorphic
Systems," IEEE Trans. on Biomedical Circuits and Systems, vol. 11, No.
5, pp. 1932-4545, Oct. 2017.

[9] https://docs.scipy.org/doc/scipy-

0.14.0/reference/generated/scipy.optimize.basinhopping.html

[10] R. Serrano-Gotarredona, M. Oster, P. Lichtsteiner, A. Linares-Barranco,
R. Paz-Vicente, F. Gómez-Rodríguez, L. Camuñas-Mesa, R. Berner, M.

Rivas, T. Delbrück, S. C. Liu, R. Douglas, P. Häfliger, G. Jiménez-
Moreno, A. Civit, T. Serrano-Gotarredona, A. Acosta-Jiménez, B.

Linares-Barranco, "CAVIAR: A 45k-Neuron, 5M-Synapse, 12G-
connects/sec AER Hardware Sensory-Processing-Learning-Actuating

System for High Speed Visual Object Recognition and Tracking," IEEE
Trans. on Neural Networks, vol. 20, No. 9, pp. 1417-1438, September

2009.

[11] T. Serrano-Gotarredona and B. Linares-Barranco, "Poker-DVS and
MNIST-DVS. Their History, How They were Made, and Other Details,"

Frontiers in Neuromorphic Engineering. Front. Neurosci. 9:481. doi:
10.3389/fnins.2015.00481. 30-Nov-2015.

