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I
n the study of electromagnetic wave propaga-
tion and scattering, researchers have always 
faced the dichotomy of dealing directly with 
Maxwell’s equations (and their complicated 
analytical/numerical solution methods) or try-

ing to find a simplified model (usually in terms of an 
equivalent circuit) that can help provide some physical 
insight into the involved electromagnetic phenomena. 
The pursuit of analytical solutions for propagation, ra-
diation, and scattering problems does not seem to be 
a task currently in much demand in microwave engi-
neering, although it was only 20 years ago that many 
research papers on these topics included some sort of 
analytic derivations. 

A Brief History of Equivalent Circuit Models
The impressive progress of computer hardware as well as 
of computational electromagnetics has rendered most 

electromagnetic problems, whether  
simple or very complex, solvable by 
means of commercial simulators. This 
trend has the advantage of enabling 
many different complex electromag-
netic scenarios to be analyzed by means 
of computational resources most re-
search laboratories can afford. However, 
it has also brought the unfortunate loss 
of some fruitful skills, among them the 
ability to find appropriate minimal-or-
der models for complex electromagnetic 
problems, the relevant parameters of 
which can be obtained in closed form. 

A particular type of problem that 
exploits the advantages of a minimal-order model 
approach is the scattering of electromagnetic waves 
by discontinuities in waveguiding systems. This  



problem was basically dealt with during the first years 
of microwave engineering development in the 1940s 
and 1950s; relevant contributors were, among others, 
J. Schwinger [1], J.W. Miles [2], G.G. Macfarlane [3], 
C.G. Montgomery [4], N. Marcuvitz [5], J. Brown 
[6], L.B. Felsen, and A.A. Oliner [7]. For the problems 
under consideration, it was generally assumed that 
only the fundamental mode is propagative along the 
waveguide and that the infinite set of high-order modes 
excited by the discontinuity are evanescent. This gave

rise to the so-called equivalent circuit approach (ECA), 
wherein the propagations along the homogeneous 
waveguide systems are modeled by simple transmis-
sion lines (TLs) with their corresponding wave imped-
ances and propagation constants, while the stored energy 
around zero-thickness discontinuities is modeled as sin-
gle-shunt lumped admittances (a ∏ network) is required 
for finite-thickness discontinuities). This procedure was 
found to be very fruitful and aided considerably in the 
development of many waveguide systems. 



During the years following these early pioneering 
works, considerable attention continued to be paid to 
the topic, extending the ECA to the case of scattering 
by periodic structures [8]–[21]. The development of 
frequency-selective surfaces (FSSs) [22] clearly ben-
efited from the ECA, with many applications that have 
continued into the present [22]–[43]. These scattering 
problems—a discontinuity inside a waveguide and 
a periodic array of either metal patches or apertures 
in a metallic screen—should be considered equiva-
lent. As explained in detail in [44], both are essentially 
the same mathematical and physical problem: a dis-
continuity inside a generalized waveguide. (Although 
beyond the scope of the present work, we should men-
tion that similar efforts have been carried out in the 
synthesis of microwave circuits by means of networks 
of lumped elements [45], [46].)

It is worth noting that the evolution of the ECA has 
been determined by the progress of computational 
electromagnetics. At the outset, most work on the 
ECA was performed analytically, with an emphasis on 
obtaining closed-form expressions for all elements of 
the equivalent network [5]. With advances in efficient 
numerical computer techniques for analyzing complex 
discontinuities, the basic idea of having an ECA still 
remains useful, but the analytical effort has generally 
been replaced by purely numerical procedures. Using 
these procedures, the elements of the circuit network 
are computed a posteriori by means of some fitting 
numerical method [23], [47], after the electromagnetic 
behavior of the scattering problem is fully known from 
a full-wave simulation. This combined technique can 
be very convenient for certain applications, such as 
optimization tasks, where simple coarse models are 
required [47], [48], but the fact that the circuit model is 
found only after the structure’s full-wave electromag-
netic behavior is characterized essentially obviates the 
necessity of the equivalent circuit. 

Regardless of the ECA’s frame of application, this 
approach is intrinsically an approximate solution to 
the actual electromagnetic problem; therefore, it is 
fundamental to establish its range of validity. Whether 
the values of the elements are given in closed form or 
extracted from full-wave simulations, the validity of 
the approach must be clearly identified and known a 
priori. In this sense, the ECA is very often applied in 

the long-wavelength limit [26], [49]–[51]. Within this 
limit, we find, for instance, that the overall effect of 
the FSS can be modeled as a homogenized surface 
with a given closed-form surface impedance/admit-
tance. For frequencies above this long-wavelength 
limit, many heuristics use information about the 
location and magnitude of the scattering parameters’ 
maxima and minima to propose a network of lumped 
elements that exhibits behavior very similar to the 
original discontinuity. 

Because the required information is obtained from 
a previous full-wave simulation within a given range 
of frequency and as the elements of this network must 
be numerically fitted to match the original simu-
lated behavior, the validity range of this approach is 
clearly limited to the frequencies under consideration. 
The wider the frequency band of interest, the more 
involved the numerical procedure and the circuit 
topology. In contrast with the previously discussed 
methods, some authors have endeavored to derive 
both the topology of the equivalent circuit and the val-
ues of its elements directly from Maxwell’s equations 
[30], [52]–[54]. Independently, these authors made 
their derivations following a rationale very similar to 
the one proposed in the seminal work of N. Marcuvitz 
[5, pp. 142–145]. 

Nevertheless, there are some differences and appli-
cation cases that still make the work of interest: 

 • the possibility of dealing with a dielectric lay-
ered scenario
 • the extension of the circuit model around and
beyond the onset of the first high-order mode

 • simple physical explanations of complex electro-
magnetic behaviors

 • the extension to more than one aperture/patch in
the discontinuity

 • the possibility of dealing with scatterers of arbi-
trary planar geometry.

Our aim in this review article is to analyze and discuss 
all these cases.

Another interesting aspect of the ECA that has 
received attention in recent years is the straightforward 
physical interpretation it provides for a number of more 
or less “exotic” phenomena arising in the field of optics 
(although some of these have, in fact, been reported at 
microwave frequencies)—for instance, Wood’s anoma-
lies [55], [56]; extraordinary optical transmission (EOT) 
[57]–[59]; anomalous extraordinary transmission (ET) 
[60]; ET dips and absorption [61]–[63]; and induced 
metal transparency [64], [65]. Due to the ECA’s ease 
of use, researchers have been able to provide simple 
yet satisfactory rationales for such phenomena, which 
previously were often accounted for by resorting to 
rather qualitative and sophisticated explanations such 
as interaction with plasmons [57], spoof plasmons [66], 
[67], and phase resonances [61], [62]. Thus, Wood’s 
anomalies and ET through two-dimensional (2-D) hole 

Although the ECA strategy reviewed 
in this article has special interest for 
microwave and antenna engineers 
working with metallic waveguides and 
periodic structures, the developed 
models also find applications in other 
branches of applied physics.



arrays [28], [54] or one-dimensional (1-D) slit arrays 
[68]–[70] made in highly conducting screens have 
been explained with simple but accurate circuit mod-
els. Phase resonance phenomena have found an ECA-
based explanation in [68] and [71], as has anomalous 
ET in [29] and [72] and enhanced transparency assisted 
by coupled periodic structures through opaque solid 
metal films in [73]. In brief, although the ECA strategy 
reviewed in this article has special interest for micro-
wave and antenna engineers working with metallic 
waveguides and periodic structures (e.g., FSSs, artifi-
cial magnetic conductors, reflectarrays, or transmitar-
rays), the developed models also find applications in 
other branches of applied physics.

Discontinuity in a Generalized Waveguide 
The first explanations of so-called EOT through a thick 
metallic sheet perforated with a periodic array of sub-
wavelength holes [57] (see the comprehensive reviews 
in [58] and [59]) were linked to the existence of surface 
plasmons in the perforated screen in optical frequen-
cies (where metals behave like materials with negative 
permittivity, i.e., like solid plasmas). The experimental 
evidence of EOT at the millimeter-wave and microwave 
regimes [74] (in this range metals can be regarded as 
almost perfect conductors) made it apparent that the 
existence of genuine plasmons was not key to explain-
ing this phenomenon. It was determined that a very 
simple equivalent circuit of the aperture discontinuity 
in the periodic structure’s unit cell could account, both 
qualitatively and quantitatively, for the ET phenomenon 
[27], [28], in close analogy to the well-known micro-
wave-engineering problem of discontinuity scattering 
inside a waveguide (the unit cell of the periodic array 
problem plays the role of a virtual waveguide) [44]. 

An interesting feature of this ET phenomenon is that 
it occurs in a region hardly explored by microwave engi-
neers—namely, at frequencies very close to the onset of 
the diffraction regime (in other words, around the cut-
off frequency of the first high-order mode in the virtual 
waveguide). After this first study of a periodic struc-
ture, the same ET phenomenon was also found in an 
aperture discontinuity inside a metallic circular wave-
guide [75], which certainly has no periodic equivalent 
structure and hence no possibility of being explained in 
terms of any sort of surface waves or plasmons. 

By contrast, the equivalent circuit of the disconti-
nuity does behave in a similar way, regardless of the 
characteristics of the waveguiding system. For that 
reason, and following the rationale in [44] and [76], in 
this article, the general problem under consideration 
will be the scattering of a discontinuity inside what 
is called a generalized waveguide—namely, a wave-
guide the boundaries of which can be perfect electric 
walls (PEWs), perfect magnetic walls (PMWs), peri-
odic boundary walls (PBWs), or some combination of 
the three. Certainly, this general problem includes the 

 

usual cases of parallel-plate waveguides (PPWs) and 
rectangular/circular metallic waveguides, as well as 
1-D metal gratings and 2-D FSSs.

In some initial works [28], [75], the equivalent circuit 
topology was heuristically proposed, and the circuit 
parameter values were extracted from a few full-wave 
simulations and further curve-fitting procedures. 
After these initial contacts with the ECA, our work 
focused on a more rigorous way of obtaining both the 
topology of the equivalent circuit and the value of its 
elements. First steps in this direction were reported in 
[30] and [32]. More complete and efficient wide-band
analytical solutions to these problems were ultimately
reported in [52] for 1-D structures, and [54] reported
a multimodal version for 2-D structures. The case
study of this last work is the scattering problem shown 
in Figure 1—namely, the scattering of a plane wave
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Figure 1. The structure under study in [54]: the 2-D periodic 
distribution of rectangular scatterers (metallic patches or 
apertures in the metallic screen) embedded in a layered 
dielectric medium. (a) A plane wave impinges obliquely on 
the structure with its wave-vector orientation characterized 
by the angles i  and .{  (b) The incidence-plane cut showing 
the possible transverse electric (TE) and transverse magnetic 
(TM) polarizations of the incident wave. Each dielectric layer is 
characterized by its permittivity ( )

0i r
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impinging on an FSS. Taking into account the periodic 
nature of this problem, only the unit cell needs to be 
considered (which is a possible instance of the consid-
ered generalized waveguide). The front and side views 
of this generalized waveguide for the FSS in Figure 1(a) 
are shown in Figure 2(a) and (b), respectively.

Two Semi-Infinite Media
In this section, we briefly explain the basic analytical 
derivation carried out in [54], along with the obtained 
topology and characteristics of the discussed equiva-
lent circuit. A time-harmonic dependence of fields of 

the type e tj~  is assumed throughout this work but not 
explicitly shown. The first and fundamental problem 
to be considered is the simple discontinuity one shown 
in Figure 3, which consists of a generalized waveguide 
with a perforated screen (an iris or a diaphragm) sepa-
rating two semi-infinite dielectric media.

Taking the waveguide axis along the z  direction, 
the following modal expansion of the electric and 
magnetic fields at the operation frequency ~  can be 
written at the discontinuity plane ( ):z 0=
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where subindex h 0=  denotes the incident mode, R  
is the reflection coefficient of the incident wave (this 
wave has been normalized to have a magnitude equal 
to 1), Vh  stands for the coefficients of the electric field 
expansion, the superindex ( )i  refers to the medium 
( , ),i 1 2=  Y( )

h
i  is the hth  modal admittance in medium 

( ),i  and the prime in the summations means that the 
incident mode is not included in the series of the infi-
nite set of modes. 

It should be noted that the reflection coefficient, 
the Vh  coefficients, and the modal admittances are 
frequency dependent. For 2-D structures, each mode 
h  should be associated with a pair of integer numbers 

.nm  In general, both TM and TE modes are included 
in the expansion (for 1-D geometries, one of these sets 
of modes could be excluded if it is not excited by the 
discontinuity). More details about this expansion and 
related quantities are given in “Modal Expansion of 
the Electric and Magnetic Fields.” 

A key assumption is now made that the transverse 
electric field at the aperture plane can be written as the 
following function factorization:

An interesting feature of this ET 
phenomenon is that it occurs in a 
region hardly explored by microwave 
engineers—namely, at frequencies very 
close to the onset of the diffraction 
regime (in other words, around the 
cutoff frequency of the first high-order 
mode in the virtual waveguide).

(a)

(b)

(c)

Unit Cell: Patch Array Unit Cell: Perforated Screen

wy wy

wx wx

Px Px

Py

ε0 ε0εr
(1) εr

(2) εr
(3)

d1 d2 d3

YInput YOutput?

Figure 2. (a) The front view of the unit cells for the two types 
of discontinuities considered in this article. The boundaries 
of the unit cells can be PEWs, PMWs, PBWs, or some  
combination of the three. (b) A generalized waveguide problem 
to model the scattering of an incident wave on an aperture 
discontinuity embedded in a layered medium. (c) Our problem 
is finding the topology and components of the equivalent 
network that accounts for the incident wave scattering.
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Figure 3. The fundamental waveguide discontinuity problem 
associated with a perforated screen located between two 
homogeneous, semi-infinite media under plane-wave oblique 
incidence. For purposes of simplicity, the incidence plane is 
taken as the principal yz plane. 



( , ; ) ( ) ( , ),x y G x yEEa a~ ~= (4)

where ( , )x yEa  is the considered frequency-indepen-
dent spatial profile of the electric field at the aperture. 
Note that this factorization should be considered a 
reasonable physically based approximation. In a rigor-
ous sense, the frequency and spatial dependences of 
the aperture field are intertwined (the validity range 
of this approximation will be discussed in more detail 
later). Because the aperture field Ea  in (4) must equal 
the electric field modal expansion in (1) and taking 
into account that the modes form an orthonormal set, 
it is straightforward to show (see “Coefficients of the 
Modal Expansion”) that the coefficients of the modal 
expansion are given by

( ) , ( ) ,R G G N1 e Ea0 0~ ~+ = = (5)

( ) , ( ) ,V G G Ne Eh h a h~ ~= = (6)

where

,N e Eh h a= (7)

denotes the projection of the assumed aperture field pro-
file onto the hth  modal profile. For rectangular wave-
guide geometries, this projection is directly related to 

Modal Expansion of the Electric and Magnetic Fields

The normalized transverse electric field profile, 
e ( , ),x yh  is assumed to be written, in general, as

( , ) ( , ),e e Fx y x yh h h$= t r (S1)

where the dyadic Fr  is given in (S2) (see bottom of page) 
for some particular but practical cases as [ ].x yx yt = +t t

The periodic boundary wall (PBW) case appears 
when we deal with two-dimensional (2-D) periodic 
scatterer arrays (for instance, FSSs). The perfect 
electric wall (PEW) case corresponds to the instance 
of rectangular metallic waveguides, and the perfect 
magnetic wall (PMW) and PEW case (it is assumed 
that there are PMWs at x 0=  and x Px=  and PEWs 
at y 0=  and )y Py=  corresponds to the 2-D periodic 
case under normal incidence, with the incident 
electric field along the y-direction. Other associated 
quantities are
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with 2d =  for PBW and 1d =  otherwise (k0  is the 
vacuum wave number). The modal admittances Y( )

h
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and 0h  being the free-space impedance.
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In this article, the general problem 
under consideration will be the 
scattering of a discontinuity inside 
what is called a generalized 
waveguide—namely, a waveguide the 
boundaries of which can be perfect 
electric walls, perfect magnetic walls, 
periodic boundary walls, or some 
combination of the three. 



the Fourier transform of the aperture field profile Ea  (see 
“Coefficients of the Modal Expansion”). The coefficients 
of the expansion (1) are then related as follows:

.N
V

N
R1

h

h

0
= + (8)

Note that .R V1 0/+  If every mode h  is now associ-
ated with a voltage signal ,Vh  then (8) interprets the 
Nh  projections as transformer turns ratios with the 
different modes connected, all in parallel, through 
such transformers.

To complete the derivation of the equivalent net-
work topology, the power continuity (integration of 
the Poynting vector) through the aperture is imposed:

.x y 0d dE H H z
.

a 2 1
ap

# $- =) t^ h6 @## (9)

This condition will give us the expression for the 
equivalent network currents consistent with the circuit 
topology suggested by (8). After introducing (2) and (3) 
into (9), the following relation is obtained:
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Now, taking the corresponding modal admittance Y( )
h
i  

in (S11) as the characteristic admittance of a TL associ-
ated with the hth  mode, the term Y V( )

h
i

h!  can be iden-
tified as the current in the hth  TL on side ( )i  (signal 
propagation along the positive/negative z  direction is 
given by the ± sign), which allows us to rewrite (10) as

.N I N I( ) ( )
h

h
h h

h
h

1 2
= ))/ / (11)

This equation, together with (8), has an apparent 
correspondence with the multimode equivalent net-
work shown in Figure 4(a). In this equivalent network, 
each TL associated with mode h  in medium ( )i  is con-
nected in parallel to every other TL through its corre-
sponding transformer of ratio .Nh

Basic derivations [78] can be carried out in this 
equivalent network to find the following scattering 
parameters corresponding to an input p  mode in 
medium ( )i  and an output q  mode in medium ( )j  [see 
Figure 4(b)]:
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Our problem is finding the topology 
and components of the equivalent 
network that accounts for the 
incident wave scattering.

Coefficients of the Modal Expansion

The projection of identity ( ) ( , ) ( , )E EG x y x ya~ =  
onto the normalized transverse profile of the sth 
mode yields
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where the following notation has been used:
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with S  representing the cross section of the 
waveguide. Taking into account that the waveguide 
modes form an orthonormal set, namely,
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Using (S1), these projections can be explicitly written as
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For the case of a waveguide with a periodic 
boundary wall (for instance when the structure under 
study is a frequency-selective surface), the substitu-
tion of (S2) into (S19) leads to
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where ( )E k ,a htu  is the standard Fourier transform of 
function ( , ).E x ya  In the cases of a perfect electric 
wall and/or perfect magnetic wall, a combination of 
sine and cosine Fourier transforms is obtained for 
rectangular waveguides. 

When the aperture’s geometric shape is 
rectangular, one can propose appropriate aperture 
field profiles, whose exponential or sine/cosine 
Fourier transforms are known in closed form. For a 
generalized waveguide with a canonical geometry 
other than rectangular, other generalized Fourier 
transforms will appear (for instance, the Fourier-
Bessel transform for circular metallic waveguides).
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with Yeq  being the sought equivalent admittance of the 
discontinuity, which can be written for this particular 
case as

.Y N Y Y N Y N Y( ) ( ) ( ) ( )
h

h
h h p p

i
q q

j2 1 2 2 2
eq = + - -6 @/  (14)

For the very practical case concerning the reflection 
coefficient ( )R  of the input waveguide’s dominant 
mode (denoted as ),h 0=  (12) leads to
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Inclusion of Dielectric Layers
After the derivation of the multimodal network associ-
ated with a discontinuity placed between two homo-
geneous media, the inclusion of a layered dielectric 
environment is fairly straightforward. Because the 
different modes in the problem do not couple to one 
another at the dielectric interfaces, the previous single 
TL accounting for each mode in each homogeneous 
semi-infinite medium can now simply be replaced by 
the corresponding cascade of TL sections, where each 

TL section models the propagation of the mode inside 
each dielectric layer. This substitution is depicted in 
Figure 5(a) for the particular configuration of dielec-
trics shown in Figure 1(b). 

In general, the previous single Y( )
h
1  and Y( )

h
2  admit-

tances of Figure 4(a) should be replaced by the cor-
responding input admittances Y ,

( )
hin

L  and Y ,
( )

hin
R  to the 

left/right cascade of dielectrics [see Figure 5(c)]. Thus, 
the equivalent admittance corresponding to the case 
shown in Figure 5(a) can be written as
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The possible existence of a backing electric/mag-
netic wall at any end of the multilayered structure can 
readily be accounted for by a short/open circuit termi-
nation of the cascade of the TL sections. In this way, 
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Figure 4. (a) The top view of the multimodal network 
representation of the scattering problem associated with a slot-
based FSS surrounded by two homogeneous media. Here, the 
symbol <- -c c  stands for a transformer. (b) The standard view 
of the TL problem representing the scattering from the p-mode 
in medium (i) to the q-mode in medium (j). The equivalent 
admittance Yeq accounts for the global effect of the parallel-
connected TLs corresponding to all the other modes. 
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For a generalized waveguide with 
a canonical geometry other than 
rectangular, other generalized Fourier 
transforms will appear (for instance, 
the Fourier-Bessel transform for 
circular metallic waveguides).



the existence of actual/virtual electric/magnetic walls 
along the longitudinal direction in the structure is rig-
orously introduced in the ECA, regardless of how close 
or far they might be to the discontinuity.

Patch-Like Discontinuities
The previous sections briefly described the procedure 
for dealing with aperture-like discontinuities in a gen-
eralized waveguide. If the discontinuity consists of a 
metallic patch (an obstacle-like discontinuity) instead of 
an aperture, the general procedure is similar although 
with some differences, as explained in [54]. The main 
difference is that the problem is now formulated in 
terms of the surface current density, ( , ),J x yp  which ren-
ders the tangential (transverse-to-z) electric field null at 

the patch surface. Following [54], the equivalent circuit 
topology of the discontinuity between two semi-infinite 
homogeneous media is the one shown in Figure 6, with 
the transformer ratios given by

, .N J eh p h
1= - (17)

The sought equivalent impedance Zeq  appearing in 
Figure 6(b) and (c) is given by the following series:

,
Z

N Y Y
1
( ) ( )

h h hh
2 1 2eq =

+
l

^ h
/ (18)

where the prime indicates that the sum extends to all 
the other modes, excluding mode p  for the case in Fig-
ure 6(b) and both the p  and q  modes for Figure 6(c). 
The generalized scattering parameters of this multi-
modal equivalent network can be obtained by apply-
ing the standard procedures of TL theory shown, for 
instance, in [78].

Other authors have also proposed multimode 
equivalent networks to deal with similar problems 
[18], [19], [21], [25]. A distinctive feature of the present 
proposal is that it takes advantage of the simplified 
factorization of the field/current in the scatterer to 
reach an explicit simple topology whose elements are 
known in closed form.

Further Considerations
Recall that the transformer ratios, ,Nh  are the only 
unknown parameters in our ECA. To compute them, 
we must offer a guess concerning the electric field at 
the aperture in the discontinuity (or the current density 
for patch-like discontinuities), as discussed in “Modal 
Expansion of the Electric and Magnetic Fields.” 

A first key assumption comes, then, from (4), in that 
the spatial profile of the aperture electric field remains 
unchanged in the frequency region of interest. This leads 
directly to the fact that the transformer ratios given in (7) 
are independent of frequency (for oblique incidence and 
PBWs, there would be a very smooth frequency depen-
dence that can be ignored for most practical purposes). 
Specific closed-form expressions for these coefficients can 
be found, for instance, by calculating the Fourier trans-
forms of the spatial profiles given in [54, Appendix A].

Thus, the only frequency dependence of the dis-
continuity’s equivalent admittance [see (16)] will come 
from the input admittances ,Y ,

( / )
hin

L R  which are known in 
closed form. As discussed in [54] and [79], the assump-
tion implicit in (4) is approximately valid up to frequen-
cies close to the scatterer’s first excitable high-order 
resonance. For normal incidence in symmetric FSSs, 
this resonance would be the scatterer’s second even 
resonance, which is well beyond the onset of the dif-
fraction regime of the structure and, therefore, quite 
above the usual practical range of interest. In other 
nonsymmetric situations, the scatterer’s first excitable 
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Figure 6. (a) The multimodal equivalent network 
associated with a periodic array of metallic scatterers 
surrounded by two homogeneous media. (b) The equivalent 
circuit for the scattering of the pth order mode. (c) The 
equivalent circuit for the transmission/reflection from 
mode p in medium (i) to mode q in medium (m), with 

, ,p q j i! !  and n m!  (for instance, if i = 1 and m = 2, 
then j = 2 and n = 1).



high-order resonance can appear within the frequency 
range of interest. 

However, in many practical situations, its reso-
nance frequency is high enough to guarantee a wide 
frequency range of reliable operation for the ECA. 
Many examples of this wide-band operation have been 
reported—for instance in [52], [54], and [79].

A second aspect to be considered concerns the 
apparent need to compute an infinite series for obtain-
ing the equivalent admittance/impedance in (16) and 
(18) at every frequency of interest. Fortunately, it can
easily be proven that the complete series frequency
behavior is almost entirely accounted for by just a
few dominant terms and that the remaining infinite
set (associated with the so-called localized high-order
modes [25], [54]) can be expressed as regular fre-
quency-independent inductances and/or capacitances.
More details on this decomposition can be found, for
instance, in [54, Sec. III].

Example Applications
Now that the topology and different parameters of the 
equivalent circuit for a generalized waveguide discon-
tinuity embedded in a layered environment have been 
discussed, along with some relevant computational 
aspects and limits of validity, in this section we turn to 
several specific application examples.

1-D Zero-Thickness Metal Strip Gratings
Although the general theory of our ECA was presented
in the section “Discontinuity in a Generalized Wave-
guide” for 2-D structures, it is apparent that 1-D struc-
tures can also be treated using the same procedure. A
relevant change when dealing with discontinuities in
1-D generalized waveguides is that only the TE/TM
modes will be excited by a TE/TM polarized incident
wave [52] (this restriction does not apply for conical inci-
dence, i.e., incidence out of the principal planes of the
structure). The involved equivalent circuits’ topology
is clearly simpler as is the complexity of the mathemati-
cal procedure (a 1-D series instead of a 2-D series). As
an example of application, consider the case shown in
Figure 7: the scattering of a TE polarized plane wave by
a periodic strip grating printed on a grounded slab.

The TLs to the left and right of Zeq  in Figure 7 
account for the propagation of the zeroth-order mode 
(incident and reflected wave) in free space and inside 
the dielectric, respectively. The short-circuit termina-
tion takes into account the presence of the ground 
plane, and the shunt impedance Zeq  represents the 
global impedance of the equivalent circuit that models 
the periodic screen, which is given by
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where the prime in the sum indicates that the zeroth 
harmonic is not included, and
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where ( )J0 $  is the Bessel function of the first kind and 
order zero (following the current profile taken in [52]), 

, ,sink k k k k,t n t n t 0 i= + =  and / .k n P2n xr=  In the par-
ticular cases that , ,N 0 1 2=  and TE incidence is nor-
mal, we find that the corresponding equivalent circuits 
are those shown in Figure 8, with the Lho  inductance 
given by
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Although the computation of this frequency-indepen-
dent series can be sped up by means of some acceleration 
technique, we found that even a brute-force computation 
of this series is acceptable, given the very reduced cen-
tral processing unit (CPU) time/effort it requires. 

The results for the phase of the reflection coefficient 
corresponding to equivalent circuits with different 
values of N  are also shown in Figure 8. The considered 
frequency band ranges over the complete nondiffrac-
tive regime, and the 2,000 values of ECA data shown 
in each plot required no more than 0.5 s on a standard 
laptop. The ECA data are compared with method of 
moment (MoM) results obtained using an in-house soft-
ware that involves a large number of mathematically 
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Figure 7. The equivalent network (bottom) used to model 
the strip grating (top), printed on a grounded slab under 
TE polarization illumination. The short-circuit termination 
accounts for the presence of the ground plane. The shunt 
impedance Zeq  is the global impedance of the equivalent 
circuit that models the effect of the periodic grating.

In brief, the ECA methodology has 
been extended, step by step,  
to provide simple solutions to a 
variety of periodic structures of 
interest in the fields of microwave 
engineering and optics.



suitable basis functions (including the correct edge 
behavior) to achieve a high level of accuracy. 

The plot in Figure 8(a) clearly shows that the sim-
plified equivalent circuit with N 0=  provides accu-
rate results only for low frequencies. This case would 
correspond to the long-wavelength limit in which the 
grating interface has been homogenized and substi-
tuted with a purely inductive surface impedance. 

The frequency change of the phase and, particu-
larly, the PMW condition (null phase) arises from 
the compensation of the admittance of Lho  by the 

short-circuit termination translated along the TL sec-
tion shown in Figure 8(a) (which turns into a capaci-
tive load). However, this condition is not sufficiently 
well accounted for by this very simple topology, thus 
requiring the incorporation of additional elements 
related to high-order modes, as shown by the better 
agreement found in Figure 8(b). Finally, the relatively 
simple equivalent circuit corresponding to N 2=  in 
Figure 8(c) is already capable of providing very accu-
rate results in all of the explored wide-frequency band. 
The models with N 1=  and N 2=  take into account 
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Figure 8. The left column shows the equivalent networks for the strip grating considered in Figure 7 under normal TE incidence 
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the full dynamic interaction of the first high-order 
modes with the ground plane. Higher-order modes 
operate far from cutoff, and their contribution is well 
characterized by .Lho  More complex examples involv-
ing oblique incidence, TE/TM polarization, and lay-
ered environments for 1-D periodic metallic gratings 
are shown and discussed in [52].

1-D Finite-Thickness Metal Strip Gratings
In this section, we consider the influence of strip
thickness on the behavior of a 1-D metal strip grating
under TM illumination. The periodic structure under
study is shown in Figure 9(a), and its corresponding
unit-cell scattering problem in Figure 9(b). To deal
with this finite-thickness problem, we will assume
that the only relevant mode inside the aperture is
the fundamental transverse electromagnetic (TEM)
mode, with the effect of the high-order modes only
being relevant in the exterior regions. In this way, the
equivalent circuit that models the scattering of the
finite-thickness discontinuity inside the generalized
waveguide shown in Figure 9(b) is given in Figure 9(c),
where ( )C( )0 ~  is just half the capacitance of the aper-
ture surrounded by two identical semi-infinite media
(in our case, free space). Y( )

0
0  stands for the admittance 

of the TEM mode in a PPW of height p, while Y0
1( )  cor-

responds to the TEM mode of the PPW of height w (the 
width of the PPW is arbitrary). 

The simple network shown in Figure 9(c) can help 
us understand the results presented in Figure 10, which 
illustrates the magnitude of the fundamental mode’s 
transmission coefficient for three different values of the 
strip thickness, t. For the smallest value of t,  the TL mod-
eling the inner region is so short that it can be neglected, 
as shown in Figure 9(d). In this case, we can observe that 
the transmission coefficient is a function decreasing 
with frequency, which reaches its minimum at the fre-
quency of the first Wood’s anomaly. Wood’s anomalies 
occur at W =f nc Px . 60/ , 120 f, ,GHz  i.e., at the onset 
of the high-order TM modes where C 0( )  ~( ) " 3. Beyond 
60 GHz, the diffraction regime starts, and the incident 
power is distributed in several grating lobes, which pre-
vents the appearance of total transmittance for the con-
sidered transmission coefficient. 

For the intermediate case t = 1mm,  a peak of ET 
occurs just before the first Wood’s anomaly, in close 
analogy with the case of a 2-D array of subwavelength 
holes fully discussed in [28]. In this case, it can easily 
be checked [78] that the TL modeling the propagation 
of the TEM mode in the electrically short inner region 
is equivalent to a ∏ network whose parallel elements 
are capacitances, and its series element is just an induc-
tance [see Figure 9(e)]. The resulting LC network of the 
discontinuity thus resonates at a frequency close to the 
first Wood’s anomaly, giving rise to the observed total 
transmittance. This resonance always happens at some 
frequency below and close to the Wood’s anomaly, 

 

where the value of ( )C0 ~  approaches infinity. Indeed, 
this type of resonance should appear for any nonvan-
ishing value of the metal thickness, but it is extremely 
narrow-band for very thin metal plates. 

For the thickest case ( ),t Px=  two transmission max-
ima appear that can be explained in terms of Fabry-
Pérot (FP) resonances inside the thick aperture region. 
They correspond to the resonances of an electrically 

Unit Cell

Metal

(b)(a)

Air Air

p w

t

Y0
(0)

Y0
(0)

Y0
(0) Y0

(0)

Y0
(0)

Y0
(0)Y0

(1)

t

C (0)(ω) C (0)(ω)

C (0)(ω) C (0)(ω)

2C (0)(ω)

(c)

(d)

(e)

Electric Wall

Electric Wall

Figure 9. (a) A 1-D strip grating with finite thickness. 
(b) A generalized waveguide (unit cell) with a finite-
thickness aperture discontinuity. (c) The equivalent 
network, assuming that the only relevant mode inside 
the aperture is the fundamental mode. (d) A simplified 
equivalent network for a negligible electrical thickness. (e) A 
simplified equivalent network for a small (but nonnegligible) 
electrical thickness. 
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large TL section of low characteristic impedance ter-
minated by two capacitances in parallel with relatively 
high characteristic impedance TLs [see Figure 9(c)]. 
The location of these FP peaks is controlled by the 
metal plate thickness, whereas the ET peak is defined 
by the period of the structure. Finally, it should be 
pointed out that an excellent agreement between the 
ECA results and those provided by HFSS simulation 
software [81] has been found in all the previous cases.

1-D T-Shaped Corrugated Surfaces
Another type of 1-D periodic structure that has been
satisfactorily analyzed by means of the ECA is the 1-D
periodic T-shaped corrugated surface considered in
[80]. Some examples of these types of structures ame-
nable to being dealt with using the ECA are shown in
Figure 11(a)–(d). The general unit cell of any of these
structures is shown in Figure 11(e). To analyze the cor-
rugated structures, the presence of a metallic cavity
at the right-hand side of the discontinuity should be
taken into account. This implies that the fields in this
region must be expanded into the appropriate modal
set, which now corresponds to a PPW of height s.

As discussed in [80, Sec. II-C], the inclusion of ohmic 
losses in the cavity walls for these types of structures 
can be carried out directly under the usual assump-
tion of strong skin effect. The equivalent circuit for 
the structure with ohmic losses is shown at the top of 
Figure 12. In the plot of the magnitude of the reflec-
tion coefficient shown in Figure 12, it is interesting to 
note that the level of ohmic losses is found to be high 
in the neighborhood of certain frequencies where the 
structure behaves as an artificial magnetic conductor. 
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corrugated planar structures analyzed in the “1-D 
T-Shaped Corrugated Surfaces” section. (a) A T-shaped
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Around these frequencies, the admittance of the 
equivalent circuit is purely resistive [80]. For frequen-
cies beyond 34 GHz, we are in the diffraction regime, 
and the reflection coefficient is not easily interpretable 
in terms of ohmic losses. However, our ECA data still 
show a good agreement with the results obtained with 
HFSS, even in this regime.

2-D Structures with Rectangular
Patches/Apertures
When the scatterer causing the discontinuity inside the
generalized waveguide under consideration has rectan-
gular geometry, it is easy to obtain closed-form expres-
sions for the transformer ratios in (7) or (17) and, hence,
for the elements of the equivalent circuit. According to
our discussion in “Coefficients of the Modal Expansion,” 
the assumed spatial profile of the electric field (current
density) in the rectangular aperture (patch) discontinu-
ity can be chosen following, for instance, the sugges-
tions in [82]. Because these profiles have a closed-form
Fourier transform, analytical expressions can be found
for the transformer ratios. A relatively simple computer
code will then give us the wide-band frequency behav-
ior of the FSSs, as those studied in [54]; one of these is

shown in Figure 13, corresponding to a TE-polarized 
plane wave that impinges obliquely over an FSS with 
rectangular metallic patches printed on a dielectric slab. 

In the results of Figure 13, it is worth noting the appear-
ance of total reflection at certain frequency values. For the 
case of . ,w 3 5 mm=  this total reflection comes basi-
cally from the resonance of each rectangular metallic 
patch. But the total reflection for the case of w 2 mm=  
is “extraordinary” in nature, similar to the extraordi-
nary total transmission reported in [28] and [57] or the 
extraordinary reflection reported in [58]; namely, it is 
directly related to the periodic nature of the struc-
ture rather than to the resonance of the scatterers. There 
is a good agreement with MoM results in a very wide fre-
quency band, even well inside the grating-lobe regime.

An additional example of a structure already studied 
(in [83]) is shown in Figure 14(c), which plots the magni-
tude of the transmission coefficient corresponding to a 
TM-polarized plane wave that impinges obliquely over a  
periodically perforated metallic screen printed on a sili-
con substrate. Figure 14(a) illustrates the front and side 
view of the unit cell of the structure, and Figure 14(b) 
presents the equivalent circuit employed to compute 
the ECA results. The circuit model accounts for the 
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Figure 14. (a) The front and side views of the periodically perforated metallic screen printed on a silicon substrate previously 
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excitation of high-order TM and TE modes operating 
well below cutoff through Cho  and ,Lho  respectively. 
However, the contribution of the first two Floquet har-
monics cannot be accounted for by means of such sim-
ple circuit components. The distributed nature of the 
contributions of the n 0=  and m 1!=  harmonics must 
be explicitly incorporated into the model, as shown in 
Figure 14(b). Although the equivalent circuit is more 
complex than a simple LC tank, all the parameters are 

still known in closed form. [Explicit expressions for the 
N0, N1, and N 1-  transformers as well as the Cho  and 
Lho  elements are given in “Explicit Expressions for Fig-
ure 4(b).”] If this enhanced circuit is used, it exhibits a 
very good agreement between these results and those 
previously obtained using the highly accurate proce-
dure in [83]. The complex behavior of the transmission 
coefficient, especially at higher frequencies, is mainly 
due to many FP resonances in the thick dielectric layer; 
fortunately, the ECA can account for these resonances 
in a rigorous way, as shown in the Figure 14.

A final example of a rectangular scatterer is shown in 
Figure 15, where the magnitude of the transmission coef-
ficient is plotted for the case of a rectangular offset aper-
ture inside a rectangular metallic waveguide. In this 
example, we show the suitability of the ECA for dealing 
with discontinuities inside metallic waveguides (in previ-
ous examples, only periodic configuration of scatterers 
were considered—namely, FSSs and/or gratings). We 
have already dealt with this type of discontinuities in [75]; 
however, the equivalent circuit presented there was very 
basic, and the circuit elements were not obtained in closed 
form but instead using a fitting procedure. 

In Figure 15, the ECA-obtained data are compared 
with results provided by an in-house MoM code, 
achieving a good agreement within the mono-mode 
operation band ).( f f2 TE101  Even beyond this mono-
mode operation band, we can observe acceptable agree-
ment that deteriorates only well inside the multimode 
operation band.

2-D Structures with Arbitrarily
Shaped Patches/Apertures
In the previous 2-D examples, the geometry of the con-
sidered scatterers was rectangular (in 1-D structures, the

present discussion is meaning-
less), which led us to obtain 
closed-form expressions for the 
transformer ratios, assuming 
that the Fourier transform of 
the spatial profile was known 
analytically. The specific shape 
of the scatterer geometry does 
not have any influence on the 
validity of (7); the only relevant 
consideration concerns the 
appropriate choice of the spa-
tial profile of the correspond-
ing aperture field (or current 
density) in the scatterer. 

In [84], we proposed em -
ploying the spatial profile 
given by the dominant mode of 
the hollow-pipe metallic wave-
guide, the boundary of which 
coincides with the geometry 
of the scatterer (if the scatterer 
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Explicit Expressions for Figure 14(b)

The transformers and high-order capacitance and 
inductance of the equivalent circuit in Figure 14(b) 
have the following explicit expressions:
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where ( )J0 $  is the Bessel function of the first kind 
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is a metallic patch, we can still employ this procedure 
[79] to find the current density after invoking the dual-
ity principle). The eigen problem to be solved in this case
is a purely 2-D problem, for which different efficient
numerical solutions are presented in the literature [85],
[86]. This required eigenfield can easily be obtained by
the eigensolver tool present in most commercial elec-
tromagnetic simulators (for instance, using the “solve
port only” option in HFSS [81]). Once this spatial pro-
file is obtained numerically, the corresponding Fourier
transform can also be obtained numerically by means
of an appropriate 2-D implementation of the fast Fourier
transform after filtering the data to reduce the numerical 
noise [79]. It should be noted that, in the present case of
arbitrary geometry, closed-form expressions for the cir-
cuit elements cannot generally be found.

As an application of the previous procedure, Figure 
16 shows the reflection coefficient for a crossed-dipole 
FSS printed on a dielectric slab. The figure also shows 
the MoM results provided by Monni et al. in [25, Fig-
ure 9] along with data obtained using HFSS. Compar-
ing the ECA results with the other data sets shows that 
the ECA provides accurate results over a considerably 
wide frequency band. The overall CPU effort required 
by the proposed approach is substantially less than that 
required by other general-purpose full-wave approaches: 
a few seconds on a typical laptop to cover the considered 
wide band, as compared to times on the order of minutes 
for specific-purpose in-house full-wave procedures or 
hours (or more) for a commercial simulator.

Stacked Structures
In this section, we describe how to apply the previous 
ECA to study a set of consecutive aperture disconti-
nuities along the longitudinal direction of the general-
ized waveguide; a possible example is the stacked FSS 
configuration shown in Figure 17. 

Before dealing with the stacked structure, we will 
consider the simpler case of a pair of coupled aperture 
discontinuities in the generalized waveguide. In partic-
ular, we will consider the unit cell with periodic bound-
ary conditions shown in Figure 18, which corresponds 
to the structure in Figure 17. To study this problem, we 

can use the even/odd excitation theory [78] so that the 
analysis of the original coupled structure is reduced to 
the combined analyses of a single FSS backed by either 
an electric wall (odd excitation) or a magnetic wall 
(even excitation). This correspondence is shown in Fig-
ure 18 by means of a TL for the fundamental propagat-
ing mode in the external region [here denoted as “(0)”] 
loaded with the corresponding equivalent admittance. 
This admittance stands for the input admittance of the 
FSS printed on a dielectric slab of thickness /d 21  ter-
minated with either a magnetic (open-circuit, )Yeq

e  or 
an electric (short-circuit, )Yeq

o  wall (the superscripts “e” 
and “o” denote even and odd excitations, respectively). 
Following [87] and [88], Yeq

e  and Yeq
o  can be expressed 

as the following series:
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where the index “(1)” refers to the internal dielec-
tric region.
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Figure 17. A schematic representation of a fishnet structure with a finite number of layers: (a) a longitudinal cross section 
and (b) a front view of the structure.
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As explained in [88], the key point in finding an ap-
propriate equivalent circuit for the pair of coupled aper-
ture-type discontinuities lies in decomposing the problem 
into internal and external subproblems. For this pur-
pose, the scattering problem of the original structure in 
Figure 19(a) can be modeled by means of the equiva-
lent ∏ network shown in Figure 19(b) or, more important-
ly, by the internal/external variant given in Figure 19(c). 
Applying the even/odd excitation theory to the circuit in 
Figure 19(b), the parallel and series admittances appear-
ing in this ∏ network can be written in terms of the previ-
ous even/odd equivalent admittances in (23) and (24) as

,Y Y Y Y( ) ( ) ( )0 1
p eq

e
p p= = +6 @ (25)

.Y Y Y2
1 ( ) ( )

s eq
o

eq
e= -^ h (26)

From (25) and (26) and the explicit form of (23) and (24), 
the admittances in Figure 19(c) are given by
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h
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h
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h
h h
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h

h
h h

2 1 1
1s b=- ^ h/ (29)

Thanks to the previous decomposition of the pair of 
coupled aperture-type discontinuities into an internal 
and an external problem, the stacked structure shown in 
Figure 20(a) can be modeled by the equivalent network 
given in Figure 20(b). This procedure can certainly be 
employed for stacked structures whose internal layers are 
different, as long as they have the same lattice constants.

As an example of the results obtained with the pre-
vious ECA, Figure 21 presents the transmission coef-
ficient of a fishnet structure with five stacked metallic 
screens. This structure was studied in [87] with the 
purpose of showing the capabilities of the ECA to 
study the exotic properties of a class of negative index-
medium structures (fishnets) and provide relatively 
simple explanations for all the observed phenomena. 
As explained in [87], the results denoted “EC (0,0)” 
correspond to the simplest topology of the equivalent 
network and are found to be valid for only low frequen-
cies. More accurate results of the ECA would require a 
more complex topology, although the relatively simple 
one corresponding to “EC (1,1)” is already sufficient to 
model the complex electromagnetic bandgap behavior 
of this stacked structure.

Other Extensions of the ECA
In all the cases previously examined, the profile of the 
unknown quantity in the scatterer (aperture field/cur-
rent density for slot-like/patch-like discontinuities) 
was assumed to be given by the simple factorization 
shown in (4). This assumption led to the definition of 
the transformer ratios given in (7) and (17), as well as 
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to the application limitations discussed in the “Fur-
ther Considerations” section. An important extension 
of the present approach consists of writing the field at 
the aperture (or the current density in the patch) as the 
following two-term factorization:

( , ; ) ( ) ( , ) ( ) ( , ).x y G x y G x yE EE , ,a a a1 1 2 2~ ~ ~= +  (30)

This extension is relevant when dealing with, for 
instance, compound gratings [61], [62] or multireso-
nant scatterers, as discussed in [24], [71], and [84]. 

The spatial profiles can be defined either in the same 
domain, in which case they can model a multiresonant 
single scatterer, or in different spatial domains, so that 
compound gratings or several scatterers/apertures per 
unit cell can be dealt with.

Unfortunately, a basic limitation of this extension 
turns out to be the impossibility of obtaining multi-
modal equivalent networks, like the ones shown in 
Figures 4 and 6. The most we could obtain is the topol-
ogy for the equivalent admittance of the discontinuity 
shown in Figure 22, which corresponds to the follow-
ing expressions (see details of the derivation in [84]):
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It should be noted that these expressions are obtained 
provided that .Y Y12 21=  This condition is found when 
the layout of the unit cell is symmetrical—namely, when 
each of the spatial profiles in (30) presents a given parity 
(even or odd). If this condition is not fulfilled, analytical 
expressions for the shunt discontinuity admittance can 
be obtained, but such expressions do not have simple 
correspondent topologies, as those shown in Figure 22.

One relevant application example is illustrated 
in Figure 23(a), where the results obtained from the 
equivalent admittance approach for a compound grat-
ing with three slits per period are compared with the 
experimental results provided in [63]. Another example 
application of the two-term factorization extension cor-
responds to the 2-D FSS with three dipoles per unit cell 
in Figure 23(b). The agreement between the ECA results 
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and those obtained from experiments or numerical 
HFSS [81] simulations is quite good in both cases.

In addition to the problems and structures consid-
ered in this review, the ECA has also been applied to find 
simple solutions for a variety of problems involving peri-
odic structures as well as to provide alternative simple 
physical explanations for interesting electromagnetic 
phenomena. Among these achievements are, for instance, 
the general case of conical incidence (the incidence plane 
distinct from the principal optical planes) and polariza-
tion conversion, which has been solved in terms of ana-
lytically obtained equivalent circuits [54], [84]. 

In [91], subtle effects associated with metal losses in 
arrays of extremely narrow slits made in thick metal 
conductors (see, for instance, [89] and [90]) have been 
easily explained in terms of conventional lossy TL 
theory. Arrays of slits with internal structure (steps 
or smoothly varying geometry) made in thick metal 
screens, which have been numerically and experimen-
tally studied in the frame of optics and physics jour-
nals, have also been modeled using equivalent circuits 
[92]–[94]. Similarly, this strategy has allowed us to eas-
ily analyze structures for multiband absorption [95] or 
conceived to open transmission bands using opaque 
grids [96] or generate stopbands using arrays of metal 
patches [97]. 

Graphene sheets or patches in stacked configuration 
have also been amenable to treatment in the frame of the 
ECA [98], [99]. Microwave transparency through opaque 
metal thin films induced by coupled arrays of printed 
strips, recently reported in [65], has been accurately 
characterized by means of an ECA analytical model [73]. 
Finally, an ECA model for strongly coupled nonaligned 
stacked slit arrays has recently been developed [100], 
[101], thanks to the incorporation of complex transform-
ers with phase-shift response. In brief, the ECA method-
ology has been extended, step by step, to provide simple 
solutions to a variety of periodic structures of interest in 
the fields of microwave engineering and optics.

Conclusions
In this article. we have discussed how to apply the ECA 
to obtain the topology as well as closed-form (or quasi-
closed-form) expressions for the circuit elements of circuit 
networks associated with planar discontinuities inside a 
generalized waveguide. The present approach has proven 
its versatility in dealing with periodic metallic gratings 
and FSSs embedded in a layered environment and also 
with discontinuities in metallic waveguides. Apart from 
the inherent numerical advantage obtained from using 
analytical procedures, the ECA also provides a very con-
venient framework to explain many complex and/or 
exotic electromagnetic phenomena, such as ET through 
arrays of subwavelength apertures, Wood’s anomalies, 
and electromagnetic-induced transparency. Although the 
ECA has certain limitations, which we have discussed in 
this article, its use where appropriate turns the ECA into 

 

a very simple, efficient, and fruitful tool for analyzing, 
designing, and optimizing many microwave devices.
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