
A 32 32 Pixel Convolution Processor Chip for
Address Event Vision Sensors With 155 ns Event

Latency and 20 Meps Throughput
Luis Camuñas-Mesa, Antonio Acosta-Jiménez, Carlos Zamarreño-Ramos,

Teresa Serrano-Gotarredona, Member, IEEE, and Bernabé Linares-Barranco, Fellow, IEEE

Abstract—This paper describes a convolution chip for
event-driven vision sensing and processing systems. As opposed
to conventional frame-constraint vision systems, in event-driven
vision there is no need for frames. In frame-free event-based vi-
sion, information is represented by a continuous flow of self-timed
asynchronous events. Such events can be processed on the fly by
event-based convolution chips, providing at their output a contin-
uous event flow representing the 2-D filtered version of the input
flow. In this paper we present a 32 32 pixel 2-D convolution
event processor whose kernel can have arbitrary shape and size
up to 32 32. Arrays of such chips can be assembled to process
larger pixel arrays. Event latency between input and output event
flows can be as low as 155 ns. Input event throughput can reach
20 Meps (mega events per second), and output peak event rate
can reach 45 Meps. The chip can be configured to discriminate
between two simulated propeller-like shapes rotating simultane-
ously in the field of view at a speed as high as 9400 rps (revolutions
per second). Achieving this with a frame-constraint system would
require a sensing and processing capability of about 100 K frames
per second. The prototype chip has been built in 0.35 m CMOS
technology, occupies 4.3 5.4 mm and consumes a peak power
of 200 mW at maximum kernel size at maximum input event rate.

Index Terms—Address event representation, convolution pro-
cessing, event-based processing, feature extraction, frame-less vi-
sion, neuromorphic circuits and systems, object recognition, vision
processing.

I. INTRODUCTION

B IO-INSPIRED spiking signal address-event systems have
attracted considerable attention in recent years, due to

their fast sensing capability, reduced information throughput,
efficient in-sensor preprocessing, and small per-event power
consumption [1]–[8]. For example, a total of eight papers on
event-driven sensing have been accepted to the IEEE Interna-
tional Solid State Circuits Conference since 2003, six based
on vision [1]–[6], and two on audition [7], [8]. In this paper,
we extend this previous work and demonstrate an event-based
convolution chip, which is capable of performing higher order

This work was supported by EU Grant 216777 (NABAB), Spanish
Grants (with support from the European Regional Development Fund)
TEC2006-11730-C03-01 (SAMANTA2) and TEC2009-10639-C04-01
(VULCANO), and Andalusian Grant P06TIC01417 (Brain System). The work
of C. Zamarreño-Ramos was supported by a national FPU scholarship. Date of
publication November 11, 2010; date of current version March 30, 2011.
This paper was recommended by Associate Editor B. Shi.
The authors are with the Instituto de Microelectrónica de Sevilla (IMSE-

CNM-CSIC). 41092 Seville, Spain (e-mail: bernabe@imse-cnm.csic.es).

operations that are commonly found in feed-forward neural
network architectures.
Early work on address-event-representation (AER) pro-

cessing, originally pioneered by Carver Mead at Caltech almost
twenty years ago [9], [10], combined asynchronous digital
design with massive parallel analog computation and high
transistor mismatch. Building on this work, during the next
ten years a few sparse research groups reported AER sensory
systems. For example, Lazzaro’s [11] and Johns Hopkins
University [12] pioneering work on audition, or Boahen’s
early developments on retinas [13], [14]. However, during
these years some basic developments were accomplished
such as a better understanding of asynchronous design [15],
[16] leading to robust unarbitrated [17] and arbitrated [18],
[19] asynchronous event readout, which combined with the
availability of user-friendly FPGA external support for inter-
facing together with new submicrometer technologies allowing
complex pixels in reduced areas, might be triggering a new
trend in AER bio-inspired Spiking Sensor developments. Since
2003 many researchers have embraced this trend. AER has
been used fundamentally in vision (retina) sensors, such as
simple light intensity to frequency transformations [6], [20],
time-to-first-spike coding [21], [22], foveated sensors [23],
spatial contrast [4], [5], [24], [25], temporal contrast [1], [3],
[6], [26], motion sensing and computation [13], and combined
spatial and temporal contrast sensing [27], [28]. But AER has
also been used for auditory systems [7], [8], [11], [12], [29],
competition and winner-takes-all networks [30], [31], and even
for systems distributed over wireless networks [32].
But sensing is just the initial part of the game. The next

obvious step is to develop Spiking Signal Event Represen-
tation techniques capable of efficiently processing the signal
flow coming from the sensors. For simple per-event heuristic
processing and filtering, direct software based solutions can be
used [33], [34]. Other schemes rely on lookup table rerouting
and event repetitions followed by single-event integration [35].
Alternatively, we can find some pioneering work in the litera-
ture aiming at performing convolutional filtering on the AER
flow produced by spiking retinas, in an attempt to mimic the
early processing of visual cortex [36], [37]: Arreguit developed
AER convolutional filters with elliptic-like kernels [38] while
Choi reported more sophisticated Gabor like filters [39]. In both
cases the shape of the filter kernel was hardwired (either elliptic
or Gabor), although some parameters were tunable allowing
slight reshaping of the 2-D kernel. In 1999 Serrano reported an
AER architecture [40] that would allow more generic kernels,
although with some geometric symmetry restrictions. It was not
until 2006 that the same group reported a working AER Con-
volution chip with arbitrary shape programmable kernel of size

up to 32 32 pixels preloaded onto an internal kernel-RAM
[41], [42]. This opened the possibility of implementing in
AER spiking hardware generic convolutional neural networks
[43]–[45], where large number of convolutional modules with
arbitrary size and shape kernels are required.
In the past, the authors have developed someAERConvChips

[41], [42] whose pixels performed kernel-dependent weighted
aggregation by means of analog low current switching circuitry
and capacitive charge accumulation. Those mixed analog-dig-
ital ConvChips required pixel-level calibration for transistor
mismatch compensation and cumbersome biasing of analog
components. Also, although they used 5-bit calibration, only
3-bit computing precision was achieved. As a result, they were
tricky to set up and use, had low precision, were little robust,
and required a strong expertize to operate them successfully.
Consequently, they were not adequate for use by other people,
nor to build large-scale multi-ConvChip systems. This moti-
vated the development of a fully-digital ConvChip module,
which we present in this paper. The main advantages of this
chip over its mixed analog-digital predecessors are: a) no need
for calibration; b) improved precision limited by the length of
implemented registers; c) event latencies almost four orders of
magnitude faster; and d) easier to set up and use.
The paper is structured as follows. The next section summa-

rizes the history of ConvNets and their applications. Section III
explains the potential advantages of implementing ConvNets
with Spiking Hardware. Section IV quickly reviews the archi-
tecture of the proposed AER convolution chip, which is very
similar to that of previous mixed signal designs, except for a
few details. Section V describes the new pixel, and Section VI
provides extensive experimental characterizations of the fabri-
cated prototype. Finally, Section VII provides discussion and
conclusions.

II. CONVOLUTIONAL NEURAL NETWORKS
Convolutional neural networks (ConvNets) is a computa-

tional paradigm, inspired in the Nobel Prize award winning
findings of Hubel and Wiesel on projection field processing
in early stages of visual cortex [36], that has been developing
as software algorithms for performing object recognition on
conventional bitmap images, without any notion of spiking
signal representation. ConvNets were originally proposed
by Fukushima in 1969 [43], [44] and further developed by
Yann LeCun [45], [46] and other groups [47]–[49], as a type
of continuous-time gradient-based learning neural paradigm,
with great success in a variety of (industrial) applications
as well as research. Examples of industrial applications and
developments are, to mention a few: 1) the early developments
at AT&T/Lucent-Technologies/NCR [50] leading to check
reading ATM machines; 2) Microsoft OCR and handwritten
character recognition systems [51]; 3) Thomson developments
in face/object recognition [52]; 4) France Telecom/Orange with
face detection and recognition, text detection and recognition
[53]–[55]; or 5) Google developments for detecting faces
and license plates in StreetView images [56]. Examples of
state-of-the-art research exploiting ConvNets are: 1) Poggio
at MIT with object recognition and scene analysis [57]; 2)
Seung at MIT with image segmentation, and biological image
analysis (brain circuit reconstruction) [58]; 3) hands/gesture
detection [59]; 4) vision based obstacle avoidance [60]; and
5) image restoration and segmentation [61], [62], and texture
classification [63].

Fig. 1. Typical hierarchical structure of a feed forward convolutional network.

Fig. 1 shows a typical hierarchical structure of a feed forward
ConvNet. It contains a sequence of layers, where each layer in-
cludes an array of Feature Maps. Feature Maps extract specific
features from the visual flow coming from the previous layer,
by performing convolutions with specific kernels. For example,
the first layer immediately after the retina could be a Gabor filter
bank for different angles and scales for extracting oriented seg-
ments. The second layer combines the extracted segments of the
first layer to detect more sophisticated shapes. So does the third
layer on the second layer extracted features, and so on, until the
last layer performs specific object recognition tolerating degrees
of deformations and sizes.

III. ADVANTAGESOF SPIKING CONVNETS:
PSEUDOSIMULTANEITY, SCALABILITY, AND

POWER EFFICIENCY
Adapting the well established ConvNet computational para-

digm to Spiking Signal Event based representations yields some
very interesting properties. The first one is the very reduced
latency between the input and output event flows of a spiking
convolution processor. We call this the pseudosimultaneity be-
tween input and output visual flows. To illustrate this, let us
look at Fig. 2, where a flow of events produced by Delbrück’s
motion retina [26] is filtered by an AER ConvChip with a ver-
tical Gabor kernel. The retina is observing two persons walking,
and retina pixels send an address event (their coordinates)
when they detect a change of light above a given threshold. As
a result, the retina output continuous event flow represents the
moving silhouettes of the two persons walking. There are no
frames nor a global periodic reset. The flow of events is contin-
uous and each pixel is autonomous. Dots in Fig. 2(a) represent
a 2-D histogram of the retina event flow for a duration of about
40 ms, containing a total of about 980 events. Circles are the
output events computed by a ConvChip during the same 40 ms.
The ConvChip was programmed with an 11 11 vertical Gabor
kernel. During these 40 ms the ConvChip produced about 260
events. As can be seen, the extracted vertical edges overlap very
well with the corresponding input edges. No time delay is ob-
served. Fig. 2(b) shows the -axis projection versus time of the
events in Fig. 2(a). Fig. 2(c)–(d) are the same as (a)–(b) but for
the events collected during the first 4 ms only, and Fig. 2(e)–(f)
for the first 1 ms. Again, extracted vertical edges seem synchro-
nized with their corresponding input edges. The ConvChip pro-
duces an output event after collecting a number of significant
space-time correlated input events. The delay of processing one
single event is in the order of tens to hundreds of nanoseconds
(as shown later in Section VI). Consequently, the delay between

Fig. 2. Illustration of pseudosimultaneity when a ConvChip filters events pro-
duced by a motion sensitive retina. (a) ConvChip input (dots) and output (cir-
cles) events captured simultaneously during 40 ms, represented in the
coordinate plane. (b) Same events represented in the plane. (c)–(d)
Represent the same than (a-b) but for a subset of events during the first 4 ms,
and (e)–(f) for the first 1 ms.

Fig. 3. Illustration of pseudosimultaneity for a 6 4 array of Gabor filters of
different scales and orientations. Input and output events correspond to the same
40 ms time window.

input and output flow is mainly given by the event density of the
input data, kernel stored, and ConvChip settings. Basically, this
means that the ConvChip needs a given number of space-time
correlated events to produce an output event. In this case reality
moves slowly and we need between 4–40 ms to collect enough
retina events for “seeing” silhouettes or parts of them. For faster
moving realities (as discussed in Section VI-E) the retina would
provide much faster event rates, and the timing characteristics
of the ConvChip (e.g., its forgetting rate) need to be adapted to
observe a much faster reality. In this case, the ConvChip also
needs to detect a given number of space-time correlated input
events to provide an output event representing a detected fea-
ture. We will discuss in more detail forgetting rate and time do-
main filtering considerations in Section IV.
Fig. 3 shows the situation where the same 40 ms retina event

flow is sent in parallel to an array of 4 6 ConvChips each pro-
grammed with a Gabor kernel of different scale and orientation.
All 24 convolution output flows shown were collected during
the same 40 ms than the input flow. This pseudosimultaneity
between input and output event flow of a spiking convolutional
module contrasts strongly with the convolution operations on
standard sequential frame-based video sensing and processing
algorithms, where for computing each convolution one needs to
have available the full input image.

Other spike coding approaches, such as rank-order coding
[64], have been reported and exploited with great success [65].
However, rank-order coding is a frame-constraint schemewhere
each frame can be represented by a compact nontimed ordered
list of spikes that can be processed very quickly. However, the
complete sequence has to be processed to obtain one convolu-
tion. Although this processing can be very fast, it is not like the
pseudosimultaneity property explained here.
The second interesting property of implementing Spiking

Event Convolutions (or other operators, in general) is its
modular scalability. Since event flows are asynchronous, each
AER link between two convolutional modules is independent
and needs no global system level synchronization. AER links
in a generic multi-AER-module system can be point-to-point
(one sender–one receiver), one-to-many (one sender–many
receivers), many-to-one (many senders–one receiver), or
many-to-many (many senders–many receivers). This has been
handled in several ways in the literature, such as establishing
special timing and handshaking characteristics of the AER links
[66], [67], or by always using a point-to-point handshaking
protocol but inserting AER splitters, mergers, and address
remapping modules, either using synchronous FPGA compo-
nents [68] or fully asynchronous self-timed schemes [69]. In
any case, it is not difficult to assemble many convolutional
modules into large size ConvNets of the type shown in Fig. 1.
Furthermore, given the pseudosimultaneity of input-to-output
Spiking Convolutional processing in individual modules, this
pseudosimultaneity also applies to larger scale multilayer and
multimodule systems.
The third interesting property of spike based hardware, in

general, is that since processing is per-event, power consump-
tion is, in principle, also per-event. Since events usually carry
relevant information, power is consumed as relevant informa-
tion is sensed, transmitted and processed. In our chip, however,
this is not exactly true. The reason is that our ConvChip includes
a forgetting mechanism which is operating always and conse-
quently consumes a fixed amount of background event-indepen-
dent power.

IV. ARCHITECTURE OF THE CONVOLUTION CHIP
The chip described in this paper is a fully digital convolu-

tion chip with programmable arbitrary-shape kernels. It receives
input AER events, which represent visual information from a
previous sensing or processing stage, and generates output AER
events, which represent the result of the convolution operation.
In general, input events can be asynchronous (if they are gener-
ated by an asynchronous AER sensor) or synchronized to some
external clock (if they come, e.g., from some computer inter-
face or other device with an internal clock). Our convolution
chip includes a synchronous controller described and synthe-
sized through VHDL. Consequently, we will need to link the
external asynchronous input events with the internal controller
clock. One option could have been using “clock stopping” [15]
during absence of input events. However, as we will explain
shortly, the synchronous controller includes a periodic forget-
ting mechanism which needs to be kept active during absence
of input events. Consequently, we chose to use “synchronizers”
to link the input asynchronous events with the internal controller
clock [70].
The system level architecture of the chip is illustrated in

Fig. 4, where the following blocks are shown: 1) array of
32 32 digital pixels; 2) static RAM that holds the stored

Fig. 4. Architecture of the convolution chip.

kernel in 2’s complement representation; 3) synchronous con-
troller, which performs the sequencing of all operations for each
input event and the global forgetting mechanism; 4) high-speed
clock generator, used by the synchronous controller (it can
be programmed to use this internal clock or an external one);
5) configuration registers that store configuration parameters
loaded serially at startup; 6) a 2’s complement block that inverts
the kernel data before being added to the pixels, if the input
event is negative; 7) left/right column shifter, to properly align
the stored kernel with the incoming event coordinates; and 8)
AER-out, asynchronous circuitry for arbitrating and sending
out the output address events generated by the pixels.
The operation of the chip is as follows: when the synchronous

controller detects a falling edge in the input Rqst_in line, the
event address and sign at Address_in is latched and the
asynchronous handshaking completed. Then the controller,
using the available kernel size information, computes the limits
of the projection field with three different possible results: 1)
the projection field fits fully inside the array of pixels; 2) it can
be partially inside the array; or 3) it can be completely outside
the array. If it is outside the array, the controller discards
the event and waits for the next one. However, in any of the
other possible situations, the controller calculates the left/right
shift between the RAM columns holding the kernel and the
projection field columns in the pixel array. After this, it enables
the addition, row after row, of the kernel values onto the pixels.
Hence, after receiving an input event, the pixels inside the

projection field change their state. If any of them reaches the
programmed threshold it resets itself and generates an output
event that will be handled by the asynchronous AER-out block
and sent off chip with its corresponding handshaking signals.
Parallel to this per-event processing, there is a global forgetting
mechanism common for all the pixels.
The asynchronous AER-out block follows the row-parallel

event read-out technique [71]. Events are arbitrated by rows (for
the same row all request signals are wired-or). Once the row ar-
biter answers, all the events generated in this row are latched on
the top periphery, freeing the row arbiter. This way, the row-ar-
biter can acknowledge the request of another row, while the
events of the previous row are sent out in a burst. Note that indi-
vidual pixels will generate their requests in synchrony with the
controller clock. Consequently, the AER event read out could
have been implemented by some synchronous mean as well
(or even using the same synchronous controller). However, it
is more efficient to use an independent asynchronous mecha-
nism, because the next stage (chip) AER receiver works asyn-
chronously with respect to the controller’s clock, and eventu-
ally might need to slow down the event communication between
both chips. In this case, it is more efficient to keep the syn-
chronous controller working on the incoming events and main-
tain its operation completely decoupled from the output event
read out process.
The size of the array is 32 32 pixels, but the input ad-

dress space it can “see” is larger (128 128). This allows to
build arrays of convolution chips to process larger pixel arrays,
programming each one of them to see a part of the address
space by setting some configuration registers [41], [42]. The
size of the RAM is 32 32 words of 6 bits in 2’s complement
representation.
In general, since convolution kernels can have positive or

negative values, output events generated by a convolution chip
can also be either positive or negative. In a multilayer system
convolution operations can be cascaded, which implies that a
generic convolution chip must be able to handle signed input
events, and produce signed output events. For this reason, the
chip described in this paper includes a sign bit both for the
input and output address events, and also for the values stored in
the kernel RAM (in 2’s complement representation). The pixels
must be able to compute signed addition and produce positive
and negative events. When processing a negative input event,
the controller enables the 2’s complement block to invert the
kernel values before being added to the pixels. Another possible
option, as done in biology, could have been duplicating channels
and neurons for positive (ON) and negative (OFF) signals. How-
ever, for our digital hardware it is much more effective to add
the sign bit processing circuitry and the 2’s complement block.
The forgetting mechanism is also handled by the synchronous

controller. The aim of this mechanism is that the absolute state
values stored in the pixels are decremented at a programmable
rate, so that they can “forget” their previous state after some
controlled time. This functionality is implemented by a 20-bit
counter in the controller which generates a periodic forgetting
pulse for all the pixels every time it reaches the programmed
limit. The forgetting pulse period is set to , where is
the programmed value and is the clock period. The max-
imum possible value is .
Each forgetting pulse will decrement by “1” the state of all the
pixels with positive state, and increment by “1” those with nega-
tive state. Consequently, the chip implements a (programmable)

Fig. 5. Block diagram of the convolution pixel.

constant-rate (or linear) forgetting mechanism, as opposed to
more biological models where the forgetting mechanism is im-
plemented via an RC discharge exponential type mechanism.
This latter mechanism would adapt automatically to the rate of
input events by settling to a DC level dependent on such rate. In
our hardware an exponential mechanism would yield a very so-
phisticated and prohibitively large pixel. However, a linear rate
forgetting mechanism just needs minor pixel modifications. The
only drawback is that the time constant associated to the for-
getting rate has to be set globally and common for all pixels,
depending on the time constants one wants to capture from the
sensed reality.

V. THE DIGITAL CONVOLUTION PIXEL
A block diagram of the convolution pixel is shown in Fig. 5.

The convolution operation is performed at the pixel level by the
integration of input events weighted by the kernel values. The
main part of the pixel is an 18-bit full adder with an 18-bit accu-
mulator. In this first digital prototype a conservative over sized
accumulator length was implemented intentionally to allow for
maximum possible precision. The criteria was to allow accu-
mulation of a scaled-up 64 64 kernel with all weights at max-
imum 6-bit value, while allowing the least significant bit of the
kernel to contribute as well to the accumulation. This results
in a dynamic range of 18 bits. Pixel area could have been re-
duced by sharing the adders column-wise and implement in the
pixel only the accumulators. However, the main delay source in
chip’s event processing is transferring data from the periphery
to the pixels. In the present version we just have one such delay
per kernel line. Sharing the adders at the periphery would imply
having two such delays, plus the need of 18 lines per column
for accumulator state transfer, instead of the present 6 lines for
transferring the weights. Alternatively, it could be possible to
pipeline the adder input and output transfers of consecutive rows
to reduce transfer delays, but at the cost of doubling the transfer
lines per column from 18 to 36.
The accumulator stores the state of the pixel, represented by

a 2’s complement signed number. For each input event, the En-
able signal (which is common for all the pixels in the same row)
is activated, the accumulator is updated with the corresponding
kernel weight , and if it reaches a programmed threshold it
fires an event and the accumulator is reset. This threshold is con-
trolled with a 3-bit parameter (Sel_lim) that selects through a
multiplexer one of the bits of the accumulator. This selected bit
is compared continuously with the sign bit (which is the most
significant bit). This way, for positive words (“ ”) the
comparator will fire when the selected bit becomes “1,” while
for negative words (“ ”) it will fire when the selected bit
becomes “0.” Note that not any of the 18 accumulator bits can
be selected for comparison, but only 8 (since Sel_lim is only 3

TABLE I
PROGRAMMABLE LIMITS FOR THE ACCUMULATOR

Fig. 6. Schematic of the interface block inside the pixel.

bit). We have chosen bits “0” to “5,” “7,” and “16.” This way we
have more flexibility for lower (more critical) thresholds which
are needed for fast processing, and keep only the possibility of
selecting bits “7” and “16” when higher precisions might be re-
quired in cases where speed is not a concern. The 8 possible
threshold settings are detailed in Table I. Note that since we are
using a simple XOR gate (instead of a comparator) to detect the
threshold, the maximum possible kernel weight has to be
chosen properly depending on the bit selected for comparison.
The periodic forgetting pulses generated by the controller

activate pixel signals Enable and Sel_forgetting for all pixels
in the array, thus producing another add/accumulate operation.
However, instead of adding the kernel value coming from
the RAM, the Forgetting block selects a different input for the
adder. This block includes a set of switches controlled by the
Sel_forgetting pulse, so that during normal event processing be-
havior the kernel value is selected, but for a global forgetting
pulse the switches select either the value 1 (if the accumulator
sign is negative) or (if it is positive).
The timing of the communication between row pixels and

row arbiter is very critical for optimum operation. Unfor-
tunately, this timing relies heavily on parasitics and changes
significantly from chip to chip, and even between different rows
of the same chip. To overcome this, we included a row-wise
coarse calibration for the row pull-down transistors. Each row’s
pull-down transistor size can be independently adjusted to

with . This row-wise calibration, together
with the possibility of globally tuning the pull-down transistor
analog gate voltage allows to optimize the timing and compen-
sate for process and in-chip variations.
The details of the AER interface block of Fig. 5 are shown in

Fig. 6.

VI. EXPERIMENTAL RESULTS
A 4.3 5.4 mm prototype chip has been fabricated in the

AMS 0.35 m CMOS process. A die photograph is shown in
Fig. 7, and chip specifications are summarized in Table II. The

Fig. 7. Photograph of the fabricated 32 32 pixel fully digital convolution
chip.

TABLE II
CHIP SPECIFICATIONS

largest block is the 32 32 array of pixels, with an approximate
area of 3.0 3.2 mm . The synchronous controller consumes
around 4500 300 m , the static kernel-RAM of 32 32
6-bit words 600 2700 m , and the left/right column shifter
600 3100 m . The rest of the circuits, like the AER-arbiters,
2’s complement and clock generator, consume much less area.
The pixel has an area of 95.6 101.3 m . Most of this

area is consumed by the 18-bit adder and accumulator. The
rest of the circuits are: the forgetting block, the multiplexer, the
comparator and the AER interface. We also include a capacitor
between supply and ground inside each pixel to filter power
glitches. This 240 fF capacitance is placed under the supply and
ground stripes, to avoid extra area consumption. The routing
of lines inside the pixel is a highly critical issue, with critical
parasitic capacitance couplings, as some lines are shared by all
the pixels in the same row or column, and can be as long as
3 mm. Some of these lines are used for configuration parame-
ters, which are loaded at startup and remain silent throughout
normal operation. These “static” lines were laid out between
fast dynamic lines, shielding couplings among dynamic lines.
Although the chip resolution is 32 32 pixels, it can address

an input space of 128 128. To specify the coordinates of the

TABLE III
PROGRAMMABLE BIASES AND PARAMETERS

chip within the whole address space, a set of configuration reg-
isters is loaded at startup. The different parameters and biases
that can be controlled by the user are described in Table III. The
top eight are digital words written serially using a shift register,
while the two bottom parameters represent analog voltage bi-
ases. Other digital words loaded at startup are the kernel weights
to be written in the kernel RAM.
The frequency of the internal clock can be adjusted through

parameter . It could be set up to 120 MHz before ob-
serving some sparse erroneous events appearing at the output.
If these spurious events can be tolerated, clock frequency could
be further increased until 200 MHz, beyond which the convo-
lution operation degrades completely. The main delay limiting
the clock speed comes from copying the kernels from the pe-
ripheral kernel-RAM onto the pixel lines, through long wires.
In our experiments we set the clock frequency at 120 MHz.
The power consumption of the chip depends both on the input

throughput and the kernel size. For instance, when setting an
event emitter to provide input events at a rate of 5 Meps the
power consumption varies between 66 mW and 198 mW, for
the smallest possible kernel (1 1) and the largest (32 32),
respectively. Next we show a series of experiments to charac-
terize chip performance. For these experiments we used a ded-
icated AER infrastructure based on FPGAs [72], [73]. We have
used two boards: 1) an AER data player, which stores sequences
of AER events and reproduces them as physical AER streams;
and 2) an AER data logger, which collects AER streams and
stores them into memory for later analysis.

A. Event Timings Characterizations
Event timing characterizations are crucial to understanding

and optimizing the main sources of delays within the chip. We
distinguish between output events peak rates which are due to
the asynchronous AER-out circuitry, input event throughput
which is due to the delays of the synchronous operations, and
input to output latencies where both synchronous and asyn-
chronous circuits play a role. We will show how to decouple
the measurements of the synchronous and asynchronous delays
by changing clock frequency. Careful characterization of each
component yields a minimum input to output latency of 155 ns.
Next we explain how to characterize this delay.

Fig. 8. Measured input and output events Rqst and Ack signals when max-
imum clock frequency is set to , with shorted Rqst_out
and Ack_out. The oscilloscope used is Agilent DSO7054A, with a bandwidth
of 500 MHz and a sample rate of 4 GSa/s.

1) Output Events Peak Rates: The chip can send out events
at a maximum output rate of 45 10 eps (events per second),
measured shorting Rqst_out and Ack_out and for events gener-
ated by pixels in the same row (in burst mode). This corresponds
to an event cycle time of ns. However, depending
on the position of the pixels within the array the event cycle
time changes significantly. Pixels closer to the arbiter will pro-
duce shorter propagation delays. However, this influence can be
minimized by setting carefully the values of the bias voltages
and calibration switches for the pull-ups and pull-downs on the
periphery. This way, we could adjust this delay between 20 ns
and 24 ns for all the pixels in the array. Fig. 8 shows the mea-
sured signalsRqst_in, ,Rqst_out (shorted with)
when the following 5-line kernel is loaded:

(1)

Pixel threshold was set to fire an output event when receiving
one single input event. Consequently, this kernel activates 10
different pixels (belonging to 5 different rows) for the same
input event. The output events in Fig. 8 show a delay of
ns when both events belong to the same row (once the row is

acknowledged by the arbiter, all the events produced in the same
row are sent out in burst mode) and a delay of ns
for events from different rows. Consequently, the difference
ns ns ns corresponds to the row arbitration

delay .
2) Input Events Throughput: The input event throughput de-

pends on the kernel size and the internal clock frequency. The
synchronous controller needs [41], [42] clock
cycles to process a single input event, where is the number
of rows of the programmed kernel (up to 32). This way, for a
clock frequency of 120 MHz (ns), the maximum
possible input event rate is 20 , which corresponds to
an input event cycle time of 50 ns when the kernel has only one

Fig. 9. Time delay between input and output events.

Fig. 10. (a) Measured values for and for different set-
tings of . (b) Measured values of for different settings of ; each
measurement was repeated 5000 times and error bars indicate measured spread;
dotted line represents linear fit ().

row. For a full kernel of 32 rows, the input event maximum rate
would be 1.77 (566 ns input event cycle time).
3) Input to Output Latency: In Fig. 9, the latency between

input and output events is represented by , which can be
expressed as .
Delay is introduced by the convolution chip when
Rqst_in is activated by the emitter. Delay is intro-
duced by the emitter when the convolution chip acknowledges.
Delay is the time used by the chip to process the
input event and generate an output event (considering a situa-
tion where one input event produces one output event). Delay

can be expressed as ,
where represents the time the synchronous controller needs
for adding kernel weights onto the pixels, and represents
the time for the asynchronous arbitration and generation of the
output event.
Fig. 10(a) shows the measured and for

different values of . Vertical bars indicate deviations over
5000 measurements. Delay is approximately con-
stant, as it depends only on the emitter. The delay measured for
the emitter board used in our tests is about ns.
However, depends almost linearly on , as can
be seen in the figure, reaching 14 ns for ns and with an
estimated residual value of 10 ns for (probably due to
internal lines and pads delays). Fig. 10(b) shows the measured

versus . The linear fit of this data reveals that at
we would have a latency of 97 ns, which corresponds

to , as would be 0. Extrapolating also
the values of and we can estimate the
value of

ns ns ns ns

Fig. 11. Experimentally obtained convolution processing results with a kernel
for vertical edge extraction. (a) Input image. (b) Ideal output image. (c) Mea-
sured output image. (d) Error image.

which is coherent with the 47 ns delay measured between two
output events from different rows. For , the
measured is 177 ns.
When cascading convolution chips, the delay of

the emitter board should be replaced by either ns
or ns. Consequently, the true minimum latency
when cascading these chips would be given by

ns
ns ns ns ns

Note that this latency is independent of the number of lines of
the kernel because, as shown in Fig. 8, it is the delay between
the input event Rqst_in and the first output event Rqst_out pro-
duced by the first kernel row. Consequently, this characterizes
minimum event latency as 155 ns.

B. Convolution Processing of 32 32 Pixel Static Images
To illustrate convolution processing, a 32 32 pixel input

image was selected from a real photograph (shown in Fig. 11(a))
to perform an edge-orientation extraction with an 11 7 differ-
ence of gaussians kernel described by:

(2)

where and are the horizontal and vertical spatial width pa-
rameters of the Gaussian lobes. The image was rate coded into
AER events with amaximum frequency of 660Hz. The frequen-
cies associated to the intensity levels are indicated in the vertical
bars on the right side of each image in Fig. 11. The mathemat-
ical computation of the convolution operation was performed
with MATLAB, obtaining the image in Fig. 11(b). Fig. 11(c)
shows the output from the convolution chip, by mapping the
signed output event frequency of each pixel into a gray level. A

Fig. 12. Speed characterizations of convolution processing. Top row: input
image pixels coded from 0 to 32 events with an event burst duration of 9.6 ms,
convolution output is captured synchronously with the input during the same
9.6 ms. Second row: same as above, but capturing input and output events syn-
chronously during the first 2.4 ms only. Third row: same, but during the first
0.35 ms. Fourth row: same, but during the first 0.12 ms.

negative pixel frequency means that the sign bit of the output
events for this pixel was negative. Fig. 11(d) represents the
error image as the difference between the ideal and measured
output. Maximum error is 42.3 Hz and error standard devia-
tion is 2.61 Hz. This error is produced by the quantization effect
produced every time a pixel accumulator is reset to zero when
reaching threshold. If pixels are not reset to zero but to the ex-
cess with respect to the threshold, then no errors would be ob-
served. However, this would complicate the pixel hardware and
increase its area consumption.
The measurements in Fig. 11 were performed by stimulating

the ConvChip with a continuous flow of events, where each
pixel had a fixed event frequency proportional to the pixel gray
level within the image. The ConvChip output event flow was
captured during a sufficiently long time and, for each pixel,
event frequency was extracted. The vertical side bars in Fig. 11
indicate pixel frequency in Hz. In order to measure the time
delay it takes to compute the 2-D convolution of this image, we
proceeded differently. Instead of providing a continuous event
flow, we generated a single burst of events representing the
image. Each pixel was assigned a number of events between
0 and 32, depending on its gray level. The top left subimage
in Fig. 12 shows, coded in gray scale, the number of events
assigned to each pixel as indicated by its side bar. The total
events of the burst is 42 691. This burst of events was then fed

to the ConvChip setting the AER data-player [72], [73] at the
maximum speed it could provide (about 10 ns/event). This way,
since the ConvChip is processing a large kernel (11 lines), the
ConvChip will slow down the event communication to the max-
imum input event throughput it can handle for this kernel size
(which is about 220 ns/event). As a result, we measured a burst
duration 9.6 ms. The top right subimage shows the output event
burst provided by the ConvChip during the same 9.6 ms, coding
the number of events collected per pixel and its sign bit in gray
scale as shown in its vertical side bar. The figures in the second
row of Fig. 12 are obtained by collecting the events during the
first 2.4 ms of the burst. Input pixels have now 8 events at the
most, while output pixels have about 3 times less events than
before. The third row is for the case events are collected during
the first 0.35 ms only. In this case, input pixels have 2 events
at the most, while output pixels range from 2 negative events
up to 4 positive events. The last row corresponds to collecting
events during the first 0.12 ms. Input pixels have one event at
the most, while output pixels have up to two events positive or
negative. As can be seen, there is a trade-off between resolution
and response time, and that even for low resolutions the output
still conveys the most representative pixels.
Note that AER visual flow representing luminance informa-

tion may require a large number of events. Therefore, using
plain luminance AER sensors in a generic AER processing
system is not the most efficient way. In practice, it is much more
efficient to use sensors with some focal plane preprocessing
such as spatial and/or temporal contrast [1]–[6], [13], [14],
[21], [22], [24]–[28].

C. Convolution Processing of Larger Static Images
Although the chip pixel array size is only 32 32, the

input address space it can see is 128 128. This allows to
assemble a 2-D array of convolution chips for processing
pixel arrays which are multiples of 32 32 [41], [42], [68].
Each convolution chip is programmed with parameters (,

, ,) to indicate where the 32 32 pixel array
is with respect to the total 128 128 input space it can see.
Using AER splitter and merger boards [73], it is possible to
build an array of 4 4 convolution chips to process arrays
of 128 128 pixels. To process larger input spaces we need
to use also AER mapper blocks [73] to map conveniently the
larger pixel space into the 128 128 pixels each convolution
chip can see. In Fig. 13 a large 256 256 static image was
processed. The original 256 256 pixel array was split into
8 8 smaller subarrays. Then, each subarray was transformed
into a sequence of AER events, processed by the convolution
chip with the same kernel than for Fig. 11 and the output events
recorded. The 64 recorded AER event sequences were then
assembled offline into 64 subimages and remapped to obtain
the 256 256 output shown in Fig. 13(c). If this mathematical
convolution is computed directly with MATLAB, the result
obtained is shown in Fig. 13(b), while the error image that
represents the difference between the ideal frequencies and the
measured ones is shown in Fig. 13(d). Maximum error is 59 Hz
while standard deviation is 2.7 Hz.

D. Convolutions for Moving Stimuli
Although the experiments shown previously correspond to

static images, the aim of the chip is to compute in real time
convolutions of dynamic stimuli coming from an AER retina.
To illustrate this, a sequence of events was captured with the

Fig. 13. Experimentally obtained convolution processing results with a kernel
for vertical edge extraction of a 256 256 input image. (a) Input image.
(b) Ideal output image. (c) Measured output image. (d) Error image.

Fig. 14. Experimentally obtained convolution processing results with a Gabor
kernel for vertical edge extraction of a 128 128 input sequence. (a) Snapshot
of the input sequence. (b) Convolution kernel. (c) Snapshot of the ideal output
sequence. (d) Snapshot of the measured output sequence.

128 128 temporal contrast vision AER retina, developed by
Lichtsteiner and Delbrück [26], showing the moving contours
of two persons walking. A 40 ms histogram of this sequence
is shown in Fig. 14(a), which uses only 1810 events from the
retina. As the retina address space is 128 128, this requires
an array of 4 4 convolution chips. Programming the 7 11
Gabor kernel in Fig. 14(b) for vertical edge detection, we ob-
tained the corresponding output sequence. A histogram of this

Fig. 15. Real-time discrimination of simultaneous rotating propellers at 2000
revolutions per second. (a) Input trajectories of both propellers rotating at a
speed of 2000 revolutions per second. (b) Short-time reconstruction of both pro-
pellers shapes. (c) Output events located at the center of the S-shape propeller.
(d) Convolution kernel used to discriminate the S-shape propeller.

output sequence for the same 40 ms of the input sequence is
shown in Fig. 14(d).
To compare with the theoretical response, we fed the same

retina stimulus to an AER behavioral simulator [74] performing
the same convolution kernel. The AER output stream produced
by this simulator was virtually identical to the one obtained ex-
perimentally by the chip. Fig. 14(c) shows the events produced
by the behavioral simulator for the same 40 ms of the input in
Fig. 14(a).

E. Discrimination of Rotating Propellers
To demonstrate the high-speed processing capabilities of the

convolution chip, a very interesting experiment is the discrimi-
nation between high-speed rotating propellers [41]. We create
artificially a sequence of events corresponding to two rotating
propellers with different shapes, following the mathematical
method explained elsewhere [41]. One of the propellers is recti-
linear, and the other one has an S-like shape, as is illustrated on
the right capture in Fig. 15. Both have a diameter of 16 pixels.
The propellers will be rotating at a high speed and moving
slowly across the screen. A human observer would only see two
solid circles without being able to discriminate between them.
In this experiment, the artificially generated sequence of input

events is loaded in an AER data player board [73], which sends
the events to the convolution chip with the correct timing. After
programming the specific kernel, the input events are sent to
the chip and the chip output events are recorded by an AER data
logger board [73]. This way, both sequences can be carefully an-
alyzed in a computer. The aim of the experiment is to track the
center of the S-shaped propeller by programming the 23 23
kernel shown in Fig. 15(d). This kernel is designed to produce
positive output events in the center of the propeller when it is
in horizontal position, and the large neighborhood with negative
weights prevents from positive events being produced outside of
the center of the propeller. Fig. 15(a)–(c) show the results of the

experiment, where the two propellers rotate at 2000 revolutions
per second. Fig. 15(a) shows the complete trajectories of both
propellers moving across the screen and intersecting at a given
point. This corresponds to a 50ms capture, while the snapshot in
Fig. 15(b) corresponds to a 50 s capture. Average input event
rate is 1.69 Meps (one revolution of the two propellers gener-
ates about 850 events). Fig. 15(c) shows how the output of the
convolution chip follows the center of the S-shaped propeller as
it moves, using the 23 23 kernel represented in Fig. 15(d). As
expected, no output is produced for the center of the rectilinear
propeller. The measured output event rate is 9.5 keps. Since the
kernel has 23 lines, processing one event requires 50 clock cy-
cles (see Section VI-A2), or 417 ns at 120MHz clock frequency.
Processing the 850 events of one revolution thus needs at least
355 s, which results in a theoretical maximum propellers ro-
tating speed of 2821 rps (revolutions per second). To find out
the real maximum rotating speed the chip is able to handle for
the two propellers, we proceeded as follows. We set the rota-
tion speed in the AER data player above this theoretical limit.
This way, the ConvChip slows down the event throughput to the
limit it can handle. Measuring the event throughput under these
circumstances reveals the maximum rotating speed, which we
measured as 2688 rps.
In order to be able to work with higher rotating speeds, a pair

of smaller propellers of 10 pixel diameter each (which generate
about 325 events per revolution) were used, for which we need
a smaller kernel of only 15 lines. At this rotating speed the input
event throughput is 1.62 Meps, while output event rate is 19.6
keps. For a 15 line kernel, each event needs 283 ns, yielding a
maximum possible event throughput of 3.53 Meps, which cor-
responds to a theoretical maximum rotation speed of 10860 rps.
By setting the AER data player to provide rotations at a higher
speed, the convolution chip slowed them down to 9433 rps.
These experiments reveal the potential of frame-free event-

driven (vision) representation sensory and processing systems
for very high speed object recognition. Note that for recognizing
10 krps propellers in a frame-constraint representation system
would require to sense and process images at least at 100 k
frames per second.

F. Recognition Latency Experiments

In order to show the short latency between input and output
event flows, we did the following experiment. As input, we used
a sequence of events recorded with a temporal contrast retina
[26] when a circle of flashing light-emitting diodes (LEDs) is
turned on and off every 40 ms. This experiment was done in
[68] with the analog convolution chip [41], and now we can
show an important improvement for the digital one. The con-
volution chip was programmed with a circular kernel to detect
the center of the input circle of LEDs. Both input and output
events are shown in Fig. 16(a) in a 3-D representation. Note
that only the ON or OFF transients generate events. Input events
are represented with dots and the output ones with circles. The
recorded stimulus from the retina can be played back at different
accelerated speeds with the AER data player. Each subfigure in
Fig. 17 shows a versus 2-D projection of a single ON
or OFF transient. The left column graphs correspond to results
obtained with the previous analog chip, while the right column
graphs correspond to the present digital convolution chip. Each
row in Fig. 17 corresponds to playing back the retina recorded
data at different acceleration rates. The top row is for real time.
Each ON (or OFF) retina transient (dots) lasts for about 5 ms

Fig. 16. (a) 3-D representation in () space of the 40 ms period ON
and OFF retina transients (dots) and convolution chip outputs (circle) when ex-
posed to a flashing circle of LEDs. (b) Measured latency between input and
output events for different values of the LEDs flash duration; circles correspond
to the analog chip, and triangles to the digital chip.

Fig. 17. Results for processing the circle of LEDs and discriminate the center,
both with the analog convolution chip and the digital one. Dots represent the
events generated by the retina, and circles represent the events generated by the
convolution chip, being the -axis the -address of the events. Each row shows
the results for different durations of the input burst.

and has about 400 events distributed in a circle in the plane
[see Fig. 16(a)]. The convolution chip output events (circles),
which appear in the center of the circle, are practically simul-
taneous to the input events, for both the analog and the dig-
ital convolution chips. The second row in Fig. 17 corresponds
to playing back the recorded retina events at a speed 10 times
faster than real time. We can see that for the analog chip the
output events appear slowed down, while for the digital chip
the graph is virtually identical to the real time one. In the third
row the recordings have been accelerated a factor of 25 with
respect to real time. As can be seen, in the analog chip there
is a latency between the retina burst and the convolution chip

output burst which is always in the order of 1 ms. This is be-
cause the analog chip includes analog comparators in the pixel
that decide when to generate output events. These comparators
were biased for low power and have a bandwidth in the order
of KHz. However, the present digital chip will produce output
events as soon as sufficient representative events for recognizing
the circle are received. This happens after receiving about 30–40
events. Fig. 16(b) shows the measured latencies between the
retina first event and the convolution first event, as function of
transient duration, for both chips. As can be seen, the latency for
the analog chip stays approximately constant (it varies between
800 s and 1 ms), while for the digital convolution chip it de-
creases linearly with the transient duration, until it saturates at
about 18 s. Consequently, this chip is capable of performing
recognition of this shape within 18 s, if input events are fed at
maximum speed.

VII. DISCUSSION AND CONCLUSIONS
We have presented a convolution chip for AER event-driven

vision sensing and processing systems. In such systems, dy-
namic visual information is represented by a continuous flow of
timed events. In this work we have shown that in these systems
input and output events of an AER convolution processing
module are simultaneous in practice, since delays are in the
range of 150 ns. This inherent property of AER processing
modules opens the possibility of assembling hierarchically
large number of them in a scalable manner, mimicking the
cerebral cortex. Such structures would have minimum delays
between input visual stimulus and output (recognition), al-
though hundreds or thousands of convolutions were performed,
because of the pseudosimultaneity property of continuous spike
flow processing.
In this paper we have presented one such AER convolutional

module, which connects to others through input and output
AER asynchronous links. It is perfectly feasible with present
day technology to assemble several tens of these convolutional
modules in a network on chip (NoC) die [75], with some extra
routing modules. This way, arbitrary networks of Conv mod-
ules can be assembled, even including feedback connections.
Several tens of these NoC dies can then be assembled on PCBs,
making it possible to have systems with several thousands of
convolutional modules processing visual information in par-
allel and with submicrosecond event delays between them. At
present, the largest reported AER multimodule system only had
about 12 AER modules, four of which were ConvChips [68].
Future research is oriented towards miniaturizing modules,
links, and simplifying reconfigurability.
The AER ConvChip module we have presented in this paper

processes an array of 32 32 pixels with kernels of arbitrary
shape and of size up to 32 32. Event latency can be as low as
155 ns, input event throughput can be as high as 20 Meps and
output event rate can reach 45 Meps. A variety of experiments
have been devised to characterize the performance and illustrate
the processing capability of the chip.
Other researchers have reported attempts using commercial

GPUs [79] achieving speed-ups of up to x35 with respect to
baseline CPU. In particular, they could process 64 64 kernels
at 200 keps on 128 128 input AER flow, but at the expense
of loosing time resolution by collapsing multiple input spikes
into a single data stream representing time windows of 1–5 ms,
as well as a power consumption of about 250 W. Other groups
have reported FPGA implementations of spiking convolutions

but using Poisson statistics probabilistic mappers, with poten-
tial of reaching 1.35 Meps for 11 11 kernels (163 MOPS) on
64 64 images [80].
Frame-based ConvNet Hardware Implementations are being

developed by other groups [76]–[78]. Farabet [77] compares
performance estimations of very well optimized ConvNets al-
gorithms implemented on CPU (Core2 Duo 2.4 GHzMacbook),
FPGA (Xilinx Virtex-4 SX35 at 200 MHz) and ASIC (Tezzaron
3D at 400 MHz). For an object detection ConvNet requiring a
total of 920 convolutions of 7 7 kernels on a 500 500 pixel
input image, the CPU can process at about 0.7 frames per second
(fps), the FPGA at about 15 fps, and the ASIC at about 100 fps.
Although these figures are quite impressive and have high po-
tential for immediate commercial deployment, these techniques
process image patches at high speeds, and thus their main limi-
tation for up scaling is off-chip memory bandwidth. Neverthe-
less, the frame-based approach is very mature and ready to use
in many embedded systems. On the other hand, the spike driven
Convolutional approach presented here is still at an incipient
development stage. However, the pseudosimultaneity and scal-
ability properties are quite attractive for approaching brain-size
systems with fast responses.

ACKNOWLEDGMENT

The authors are grateful to T. Delbrück for providing the AER
temporal contrast retina [26] the jAER open software [33] and
constructive feedback, A. Civit’s group for the AER interfacing
boards [72], P. Häfliger for the CAVIAR PCB for holding the
ConvChip and the lens mount holder for the retina, and E. Cu-
lurciello and C. Farabert for valuable discussions.

REFERENCES

[1] U. Mallik, M. Clapp, E. Choi, G. Cauwenberghs, and R. Etienne-Cum-
mings, “Temporal change threshold detection imager,” in IEEE ISSCC
Dig. Tech. Papers, 2005, pp. 362–363.

[2] P. Lichtsteiner, C. Posch, and T. Delbruck, “A 128 128 12 dB 30mW
asynchronous vision sensor that responds to relative intensity change,”
in IEEE ISSCC Dig. Tech. Papers, 2006, pp. 508–509.

[3] C. Posch, M. Hofstatter, D. Matolin, G. Vanstraelen, P. Schon, N. Do-
nath, and M. Litzenberger, “A dual-line optical transient sensor with
on-chip precision time-stamp generation,” in IEEE ISSCC Dig. Tech.
Papers, 2007, pp. 500–618.

[4] N. Massari, M. Gottardi, and S. Jawed, “A 100 64 128-pixel
contrast-based asynchronous binary vision sensor for wireless sensor
networks,” in IEEE ISSCC Dig. Tech. Papers, 2008, pp. 588–638.

[5] P. F. Ruedi, P. Heim, S. Gyger, F. Kaess, C. Arm, R. Caseiro, J.-L.
Nagel, and S. Todeschini, “An SoC combining a 132 dB QVGA pixel
array and a 32 b DSP/MCU processor for vision applications,” in IEEE
ISSCC Dig. Tech. Papers, 2009, pp. 46–47, 47a.

[6] C. Posch, D. Matolin, and R Wohlgenannt, “A QVGA 143 dB DR
asynchronous address-event PWM dynamic vision and image sensor
with lossless pixel-level video compression and time-domain CDS,”
in ISSCC Dig. Tech. Papers, 2010, pp. 400–401.

[7] R. Sarpeshkar, M. W. Baker, C. D. Salthouse, J.-J. Sit, L. Turicchia,
and S. M. Zhak, “An analog bionic ear processor with zero-crossing
detection,” in ISSCC Dig. Tech. Papers, 2005, pp. 78–79.

[8] B. Wen and K. Boahen, “A 360-channel speech preprocessor that em-
ulates the cochlear amplifier,” in ISSCC Dig. Tech. Papers, 2006, pp.
556–557.

[9] M. Sivilotti, “Wiring considerations in analog VLSI systems with
application to field-programmable networks,” Ph.D. dissertation,
Comput. Neural Syst., California Inst. Technol., Pasadena, CA, 1991.

[10] M. A. Mahowald, “VLSI analogs of neuronal visual processing: A syn-
thesis of form and function,” Ph.D. dissertation, Comput. Neural Syst.,
California Inst. Technol., Pasadena, CA, 1992.

[11] J. Lazzaro, J. Wawrzynek, M. Mahowald, M. Silvilotti, and D. Gille-
spie, “Silicon auditory processors as computer peripherals,” IEEE
Trans. Neural Netw., vol. 4, pp. 523–528, May 1993.

[12] G. Cauwenberghs, N. Kumar, W. Himmelbauer, and A. G. Andreou,
“An analog VLSI chip with asynchronous interface for auditory feature
extraction,” IEEE Trans. Circuits Syst. Part II, Analog Digit. Signal
Process., vol. 45, pp. 600–606, May 1998.

[13] K. Boahen, “Retinomorphic chips that see quadruple images,” in
Proc. Int. Conf. Microelectron. Neural, Fuzzy Bio-Inspired Syst.
(Microneuro99), Granada, Spain, pp. 12–20.

[14] K. Boahen, “A retinomorphic chip with parallel pathways: Encoding
INCREASING, ON, DECREASING, and OFF visual signals,” Int. J.
Analog Integr. Circuits Signal Process., vol. 30, pp. 121–135, Feb.
2002.

[15] A. J. Martin and M. Nyström, “Asynchronous techniques for
system-on-chip design,” Proc. IEEE, vol. 94, no. 6, pp. 1089–1120,
Jun. 2006.

[16] J. Sparsø and S. B. Furber, Principles of Asynchronous Circuit Design:
A Systems Perspective. Norwell, MA: Kluwer, 2001.

[17] A. Mortara, E. A. Vittoz, and P. Venier, “A communication scheme for
analog VLSI perceptive systems,” IEEE J. Solid-State Circuits, vol. 30,
pp. 660–669, Jun. 1995.

[18] K. Boahen, “Retinomorphic vision systems,” presented at the Mi-
croneuro’96: Fifth Int. Conf. Neural Netw. Fuzzy Syst., Laousanne,
Switzerland, Feb. 1996.

[19] K. Boahen, “Point-to-Point connectivity between neuromorphic chips
using address events,” IEEE Trans. on Circuits Syst. II, Analog Digit.
Signal Process., vol. 47, no. 5, pp. 416–434, May 2000.

[20] E. Culurciello, R. Etienne-Cummings, and K. A. Boahen, “A biomor-
phic digital image sensor,” IEEE J. Solid-State Circuits, vol. 38, pp.
281–294, 2003.

[21] P. F. Ruedi, P. Heim, F. Kaess, E. Grenet, F. Heitger, P.-Y. Burgi, S.
Gyger, and P. Nussbaum, “A 128 128, pixel 120-dB dynamic-range
vision-sensor chip for image contrast and orientation extraction,” IEEE
J. Solid-State Circuits, vol. 38, pp. 2325–2333, 2003.

[22] S. Chen and A. Bermak, “Arbitrated time-to-first spike CMOS image
sensor with on-chip histogram equalization,” IEEE Trans. Very Large
Scale Integr. (VLSI) Syst., vol. 15, no. 3, pp. 346–357, Mar. 2007.

[23] M. Azadmehr, J. Abrahamsen, and P. Häfliger, “A foveated AER im-
ager chip,” in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS2005), Kobe,
Japan, pp. 2751–2754.

[24] J. Costas-Santos, T. Serrano-Gotarredona, R. Serrano-Gotarredona,
and B. Linares-Barranco, “A contrast retina with on-chip calibration
for neuromorphic spike-based AER vision systems,” IEEE Trans.
Circuits Syst. I, Reg. Papers, vol. 54, no. 7, pp. 1444–1458, Jul. 2007.

[25] J. A. Leñero-Bardallo, T. Serrano-Gotarredona, and B. Linares-Bar-
ranco, “A five-decade dynamic-range ambient-light-independent cali-
brated signed-spatial-contrast AER retina with 0.1 ms latency and op-
tional time-to-first-spike mode,” IEEE Trans. Circuits Syst. I, Reg. Pa-
pers, to be published.

[26] P. Lichtsteiner, C. Posch, and T. Delbruck, “A 128 128 120 dB 30
mW asynchronous vision sensor that responds to relative intensity
change,” IEEE J. Solid-State Circuits, vol. 43, pp. 566–576, Feb. 2008.

[27] K. A. Zaghloul and K. Boahen, “Optic nerve signals in a neuromorphic
chip: Part 1,” IEEE Trans. Biomed. Eng., vol. 51, pp. 657–666, 2004.

[28] K. A. Zaghloul and K. Boahen, “Optic nerve signals in a neuromorphic
chip: Part 2,” IEEE Trans. Biomed Eng., vol. 51, pp. 667–675, 2004.

[29] V. Chan, S.-C. Liu, and A. van Schaik, “Aer EAR: A matched silicon
cochlea pair with address event representation interface,” IEEE Trans.
Circuits Syst. I, Reg. Papers, vol. 54, pp. 48–59, Jan. 2007.

[30] E. Chicca, A. M. Whatley, P. Lichtsteiner, V. Dante, T. Delbruck, P.
Del Giudice, R. J. Douglas, and G. Indiveri, “A multichip pulse-based
neuromorphic infrastructure and its application to a model of orienta-
tion selectivity,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 54, no.
5, pp. 981–993, May 2007.

[31] M. Oster, Y. Wang, R. Douglas, and S.-C. Liu, “Quantification of a
spike-based winner-take-all VLSI network,” IEEE Trans. Circuits Syst.
I, Reg. Papers, vol. 55, no. 10, pp. 3160–3169, Nov. 2008.

[32] T. Teixeira, A. G. Andreou, and E. Culurciello, “Event-based imaging
with active illumination in sensor networks,” in Proc. IEEE Int. Symp.
Circuits Syst. (ISCAS2005), Kobe, Japan, pp. 644–647.

[33] [Online]. Available: http://jaer.wiki.sourceforge.net
[34] T. Delbrück, “Frame-free dynamic digital vision,” in Proc. Int. Symp.

Secure-Life Electron., Adv. Electron. Quality Life Soc., Mar. 6–7, 2008,
pp. 21–26.

[35] R. J. Vogelstein, U. Mallik, E. Culurciello, G. Cauwenberghs, and
R. Etienne-Cummings, “A multi-chip neuromorphic system for
spike-based visual information processing,” Neural Comput., vol. 19,
no. 9, pp. 2281–300, 2007.

[36] D. H. Hubel and T. N. Wiesel, “Receptive fields of single neurones in
the Cat’s striate cortex,” J. Physiol., vol. 148, pp. 574–591, 1959.

[37] E. T. Rolls and G. Deco, Computational Neuroscience of Vision. New
York: Oxford Univ. Press, 2002.

[38] P. Vernier, A. Mortara, X. Arreguit, and E. A. Vittoz, “An integrated
cortical layer for orientation enhancement,” IEEE J. Solid-State Cir-
cuits, vol. 32, pp. 177–186, Feb. 1997.

[39] T. Y. W. Choi, P. Merolla, J. Arthur, K. Boahen, and B. E. Shi,
“Neuromorphic implementation of orientation hypercolumns,” IEEE
Trans. Circuits Syst. I, Reg. Papers, vol. 52, no. 6, pp. 1049–1060,
Jun. 2005.

[40] T. Serrano-Gotarredona, A. G. Andreou, and B. Linares-Barranco,
“Aer image filtering architecture for vision processing systems,” IEEE
Trans. Circuits Syst. I, Fundam. Theory Appl., vol. 46, no. 9, pp.
1064–1071, Sep. 1999.

[41] R. Serrano-Gotarredona, T. Serrano-Gotarredona, A. Acosta-Jiménez,
and B. Linares-Barranco, “A neuromorphic cortical-layer microchip
for spike-based event processing vision systems,” IEEE Trans. Circuits
Systems I, Reg. Papers, vol. 53, no. 12, pp. 2548–2566, Dec. 2006.

[42] R. Serrano-Gotarredona, T. Serrano-Gotarredona, A. Acosta-Jiménez,
C. Serrano-Gotarredona, J. A. Pérez-Carrasco, B. Linares-Barranco,
A. Linares-Barranco, G. Jiménez-Moreno, and A. Civit-Ballcels,
“On real-time AER 2-D convolution hardware for neuromorphic
spike-based cortical processing,” IEEE Trans. Neural Netw., vol. 19,
no. 7, pp. 1196–1219, Jul. 2008.

[43] K. Fukushima, “Visual feature extraction by a multilayered network
of analog threshold elements,” IEEE Trans. Syst. Sci. Cybern., vol.
SSC-5, no. 4, pp. 322–333, 1969.

[44] K. Fukushima and N. Wake, “Handwritten alphanumeric character
recognition by the neocognitron,” IEEE Trans. Neural Netw., vol. 2,
no. 3, pp. 355–365, May 1991.

[45] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proc. IEEE, vol. 86, no.
11, pp. 2278–2324, Nov. 1998.

[46] Y. LeCun and Y. Bengio, “Convolutional networks for images,
speech, and time series,” in The Handbook of Brain Science and
Neural Networks, M. Arbib, Ed. Cambridge, MA: MIT Press, 1995,
pp. 255–258.

[47] S. Grossberg, E.Mingolla, and J.Williamson, “Synthetic aperture radar
processing by a multiple scale neural system for boundary and surface
representation,” Neural Netw., vol. 8, no. 7/8, pp. 1005–1028, 1995.

[48] S. Lawrence, C. L. Giles, A. Tsoi, and A. Back, “Face recognition: A
convolutional neural network approach,” IEEE Trans. Neural Netw.,
vol. 8, no. 1, pp. 98–113, 1997.

[49] C. Neubauer, “Evaluation of convolution neural networks for visual
recognition,” IEEE Trans. Neural Netw., vol. 9, no. 4, pp. 685–696,
1998.

[50] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W.
Hubbard, and L. D. Jackel, “Backpropagation applied to handwritten
zip code recognition,” Neural Comput., vol. 1, no. 4, pp. 541–551,
1989.

[51] K. Chellapilla, M. Shilman, and P. Simard, “Optimally combining a
cascade of classifiers,” presented at the Int. Symp.. Document Recog.
Retrieval, San Jose, CA, 2006.

[52] R. Vaillant, C. Monrocq, and Y. LeCun, “Original approach for the lo-
calisation of objects in images,” IEE Proc. Vis., Image, Signal Process.,
vol. 141, no. 4, pp. 245–250, Aug. 1994.

[53] M. Osadchy, Y. LeCun, and M. Miller, “Synergistic face detection and
pose estimation with energy-based models,” J. Mach. Learn. Res., vol.
8, pp. 1197–1215, May 2007.

[54] C. Garcia and M. Delakis, “Convolutional face finder: A neural archi-
tecture for fast and robust face detection,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 26, no. 11, pp. 1408–1423, 2004.

[55] F. Nasse, C. Thurau, and G. A. Fink, “Face detection using gpu-based
convolutional neural networks,” Lecture Notes in Computer Science,
Computer Analysis of Images and Patterns, vol. 5702/2009, pp. 83–90,
2009.

[56] A. Frome, G. Cheung, A. Abdulkader,M. Zennaro, B.Wu, A. Bissacco,
H. Adam, H. Neven, and L. Vincent, “Large-scale privacy protection
in Google street view,” in Proc. Int. Conf. Comp. Vis. (ICCV’09), 2009,
pp. 2373–2380.

[57] T. Serre, L. Wolf, S. Bileschi, M. Riesenhuber, and T. Poggio, “Robust
object recognition with cortex-like mechanisms,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 29, no. 3, pp. 411–426, Mar. 2007.

[58] V. Jain and H. S. Seung, “Natural image denoising with convolutional
networks,” in Advances in Neural Information Processing Systems.
Cambridge, MA: MIT Press, 2008, vol. 21.

[59] S. Nowlan and J. Platt, “A convolutional neural network hand tracker,”
in Advances in Neural Information Processing Systems, G. Tesauro, D.
Touretzky, and T. Leen, Eds. Cambridge, MA: MIT Press, 1995, vol.
7, pp. 901–908.

[60] R. Hadsell, P. Sermanet, M. Scoffier, A. Erkan, K. Kavackuoglu, U.
Muller, and Y. LeCun, “Learning long-range vision for autonomous
off-road driving,” J. Field Robot., vol. 26, no. 2, pp. 120–144, Feb.
2009.

[61] F. Ning, D. Delhomme, Y. LeCun, F. Piano, L. Bottou, and P. Barbano,
“Toward automatic phenotyping of developing embryos from videos,”
IEEE Trans. Image Process., vol. 14, no. 9, pp. 1360–1371, Sep. 2005.

[62] V. Jain, J. F. Murray, F. Roth, S. Turaga, V. Zhigulin, K. Briggman,
M. Helmstaedter, W. Denk, and H. S. Seung, “Supervised learning
of image restoration with convolutional networks,” in Proc. Int. Conf.
Comp. Vis. (ICCV’07), pp. 1–8.

[63] J. A. Pérez-Carrasco, B. Acha, C. Serrano, L. Camuñas-Mesa, T.
Serrano-Gotarredona, and B. Linares-Barranco, “Fast vision through
frame-less event-based sensing and convolutional processing. Appli-
cation to texture recognition,” IEEE Trans. Neural Netw., vol. 21, no.
4, pp. 609–620, Apr. 2010.

[64] R. VanRullen and S. J. Thorpe, “Rate coding versus temporal order
coding: What the retinal ganglion cells tell the visual cortex,” Neural
Comput., vol. 13, no. 6, pp. 1255–1283, Jun. 2001.

[65] A. Delorme, J. Gautrais, R. Van Rullen, and S. S. Thorpe, “Spikenet: A
simulator for modeling large networks of integrate and fire neurons,”
Neurocomputing, vol. 26–27, pp. 989–996, 1999.

[66] J. Lazzaro and J.Wawrzynek, “A multi-sender asynchronous extension
to the AER protocol,” in Proc. 16th Conf. Adv. Res. VLSI (ARVLSI’95),
pp. 158–158.

[67] S. R. Deiss, R. J. Douglas, and A.M.Whatley, “A pulse-coded commu-
nications infrastructure for neuromorphic systems,” in Pulsed Neural
Networks, W. Maass and C. M. Bishop, Eds. Cambridge, MA: MIT
Press, 1999, ch. 6, pp. 157–178.

[68] R. Serrano-Gotarredona, M. Oster, P. Lichtsteiner, A. Linares-Bar-
ranco, R. Paz-Vicente, F. Gómez-Rodríguez, L. Camuñas-Mesa,
R. Berner, M. Rivas, T. Delbrück, S. C. Liu, R. Douglas, P.
Häfliger, G. Jiménez-Moreno, A. Civit, T. Serrano-Gotarredona,
A. Acosta-Jiménez, and B. Linares-Barranco, “Caviar: A 45 k
neuron, 5 M synapse, 12 G connects/s AER hardware sensory-pro-
cessing-learning-actuating system for high-Speed visual object
recognition and tracking,” IEEE Trans. Neural Netw., vol. 20, no. 9,
pp. 1417–1438, Sep. 2009.

[69] P. Merolla, J. Arthur, B. E. Shi, and K. Boahen, “Expandable networks
for neuromorphic chips,” IEEE Trans. Circuits Syst. I, Reg. Papers,
vol. 54, no. 2, pp. 301–311, Feb. 2007.

[70] M. J. Bellido, A. J. Acosta, J. Luque, A. Barriga, and M. Valencia,
“Evaluation of metastability transfer models: An application to an
N-bistable CMOS synchronizer,” Int. J. Electron., vol. 79, no. 5, pp.
585–593, 1995.

[71] K. A. Boahen, “A burst-mode word-serial address-event link – Part I:
Transmitter design,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 51,
no. 7, pp. 1269–1280, Jul. 2004.

[72] A. Linares-Barranco, G. Jiménez-Moreno, B. Linares-Barranco, and
A. Civit-Ballcels, “On algorithmic rate-coded AER generation,” IEEE
Trans. Neural Netw., vol. 17, no. 3, pp. 771–788, May 2006.

[73] F. Gómez-Rodríguez, R. Paz, A. Linares-Barranco, M. Rivas, L. Miro,
S. Vicente, G. Jimenez, and A. Civit, “AER tools for communica-
tions and debugging,” in Proc. IEEE Int. Symp. Circuits Syst. 2006
(ISCAS’06), pp. 3253–3256.

[74] J. A. Pérez-Carrasco, T. Serrano-Gotarredona, C. Serrano-Go-
tarredona, B. Acha, and B. Linares-Barranco, “High-speed character
recognition system based on a complex hierarchical AER architec-
ture,” in Proc. 2008 IEEE Int. Symp. Circuits Syst. (ISCAS08), pp.
2150–2153.

[75] S. R. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson, J. Tschanz,
D. Finan, A. Singh, T. Jacob, S. Jain, V. Erraguntla, C. Roberts, Y.
Hoskote, N. Borkar, and S. Borkar, “An 80-Tile 1.28 TFLOPS net-
work-on-chip in 65 nm CMOS,” in Proc. IEEE Int. Solid-State Circuits
Conf. (ICCSC07), pp. 98–99.

[76] C. Fabaret, C. Poulet, J. Y. Han, and Y. LeCun, “Cnp: An FPGA-based
processor for convolutional networks,” in Int. Conf. Field Progr. Logic
Appl., 2009.

[77] C. Farabet, B. Martini, P. Akselrod, S. Talay, Y. LeCun, and E. Culur-
ciello, “Hardware accelerated convolutional neural networks for syn-
thetic vision systems,” in Proc. 2010 IEEE Int. Symp. Circuits Syst.
(ISCAS10), 2010, pp. 257–260.

[78] F. Mamalet, S. Roux, and C. Garcia, “Embedded facial image pro-
cessing with convolutional neural networks,” in Proc. 2010 IEEE Int.
Symp. Circuits Syst. (ISCAS10), 2010, pp. 261–263.

[79] J. M. Nageswaran, N. Dutt, Y. Wang, and T. Delbrück, “Computing
spike-based convolutions on GPUs,” in Proc. 2009 IEEE Int. Symp.
Circuits Syst. (ISCAS09), pp. 1917–1920.

[80] A. Linares-Barranco, R. Paz-Vicente, F. Gómez-Rodríguez, A.
Jiménez, M. Rivas, G. Jiménez, and A. Civit, “On the AER convolu-
tion processors for FPGA,” in Proc. 2010 IEEE Int. Symp. Circuits
Syst. (ISCAS10), 2010, pp. 4237–4240.

