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Abstract: Transient receptor potential (TRP) proteins form non-selective Ca2+ permeable channels
that contribute to the modulation of a number of physiological functions in a variety of cell types.
Since the identification of TRP proteins in Drosophila, it is well known that these channels are activated
by stimuli that induce PIP2 hydrolysis. The canonical TRP (TRPC) channels have long been suggested
to be constituents of the store-operated Ca2+ (SOC) channels; however, none of the TRPC channels
generate Ca2+ currents that resemble ICRAC. STIM1 and Orai1 have been identified as the components
of the Ca2+ release-activated Ca2+ (CRAC) channels and there is a body of evidence supporting that
STIM1 is able to gate Orai1 and TRPC1 in order to mediate non-selective cation currents named ISOC.
STIM1 has been found to interact to and activate Orai1 and TRPC1 by different mechanisms and
the involvement of TRPC1 in store-operated Ca2+ entry requires both STIM1 and Orai1. In addition
to the participation of TRPC1 in the ISOC currents, TRPC1 and other TRPC proteins might play a
relevant role modulating Orai1 channel function. This review summarizes the functional role of
TRPC channels in the STIM1–Orai1 scenario.
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1. Introduction

The relevance of Ca2+ influx in cellular physiology was revealed by Ringer in the early 1880s [1]
and was almost a century later when store-operated Ca2+ entry (SOCE), also known as capacitative Ca2+

entry, was identified [2] (Figure 1). SOCE is a singular mechanism for Ca2+ influx as it is activated by
discharge of the intracellular agonist-sensitive Ca2+ stores unlike other Ca2+ entry pathways activated
by physical changes of the plasma membrane (PM) or direct chemical stimulation of the channels. A
number of store-operated currents with different biophysical properties have been described; among
them, the first identified and best characterized one is the highly Ca2+ selective Ca2+ release-activated
Ca2+ current (ICRAC). ICRAC is a non-voltage activated, inwardly rectifying, current initially described
in mast cells upon depletion of the intracellular Ca2+ pools by means of stimulation with inositol
1,4,5-trisphosphate (IP3), ionomycin, or excess of EGTA [3]. As mentioned before, ICRAC is not the only
store-operated current and a variety of store-operated currents grouped under the term ISOC have been
reported in different cell types, which differ from ICRAC in several biophysical features (see Table 1),
including that ISOC are not selective for Ca2+ and exhibit greater conductance than ICRAC (for a review,
see [4]). Since the identification of SOCE, two main issues attracted considerable attention and interest:
(1) the molecular basis of the communication between the intracellular Ca2+ stores and the channels in
the PM and (2) the nature of the store-operated channels.
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the communication between the intracellular Ca2+ stores and the channels in the PM and (2) the 
nature of the store-operated channels. 

 
Figure 1. Milestones in the characterization of Ca2+ entry. In the early 1880s, Ringer revealed the 
functional role of Ca2+ entry in heart contraction. About a century later, store-operated Ca2+ entry 
(SOCE) was discovered and, by that time, transient receptor potential (TRP) channels were 
identified, first in Drosophila and then in mammals. In 2005 and 2006 STIM1 and Orai1, the key 
components of the Ca2+ release-activated Ca2+ (CRAC) channels, were identified, and canonical 
TRP (TRPC) channels were found to participate in a non-selective store-operated current together 
with STIM1 and Orai1. The model represents two alternatives for the involvement of TRPC in the 
store-operated channels. 

Back to 1969, Cosens et al. identified a spontaneous Drosophila mutant with altered 
electroretinogram [5] that was attributed to a mutation of the so called transient receptor potential 
(TRP) channel that resulted in transient, rather than sustained, light-dependent depolarization of 
the photoreceptors upon Na+ and Ca2+ entry [6]. Drosophila TRP and its homologue TRPL were 
characterized as Ca2+ permeable channels activated downstream of phospholipase C [7]. In 1995, 
two separate groups identified the first human homolog of the Drosophila TRP channel, TRPC1 
[8,9]. After the characterization of TRPC1, a number of homologs were identified in mammalian 
cells and grouped into six subfamilies: TRPC (canonical) comprising seven members (TRPC1-
TRPC7), TRPV (vanilloid) including subtypes TRPV1 to TRPV6, TRPM (melastatin), which 
comprises eight members (TRPM1-TRPM8), TRPA (ankyrin) consisting of only one member 
TRPA1 and TRPP (polycystin) as well as TRPML (mucolipin) comprising three members each 
(revised in [10,11]). 

The basic structure of TRP channels consists of six transmembrane helical domains (TM1 
through TM6) with a loop between TM5 and TM6 forming the channel pore and N- and C-
terminal regions located in the cytosol. TRP channels are thought to tetramerize to form a 24-helix 
functional protein complex. Mammalian TRP channels exhibit different functional domains, 
including a variable number of N-terminal ankyrin repeats present in TRPC, TRPV and TRPA 
that is involved in protein-protein interaction (revised in [10,12,13]). Remarkably, three members 
of the TRPM subfamily contain a catalytic kinase domain in the C-terminal region and TRPC and 
TRPM channels exhibit a conserved TRP domain adjacent to TM6, containing a highly conserved 
sequence named TRP box, involved in signal transduction coupling and channel gating [14]. In 
addition, a number of mammalian TRP members contain N- and/or C-terminal coiled-coil 
domains that play an important role in channel multimerization [15] as well as the interaction of 
TRPC channels with the endoplasmic reticulum (ER) Ca2+ sensor STIM1 [16]. TRPC members 
contains a C-terminal calmodulin (CaM)- and inositol 1,4,5-trisphosphate receptor (IP3R)-binding 
(CIRB) site, which participates in the regulation of TRPC channel function [17,18]. 

TRP channels are mostly non-selective cation channels that are permeable to both 
monovalent and divalent cations with Ca2+ to Na+ permeability ratios ranging from 0.01 to over 

Figure 1. Milestones in the characterization of Ca2+ entry. In the early 1880s, Ringer revealed the
functional role of Ca2+ entry in heart contraction. About a century later, store-operated Ca2+ entry
(SOCE) was discovered and, by that time, transient receptor potential (TRP) channels were identified,
first in Drosophila and then in mammals. In 2005 and 2006 STIM1 and Orai1, the key components of the
Ca2+ release-activated Ca2+ (CRAC) channels, were identified, and canonical TRP (TRPC) channels
were found to participate in a non-selective store-operated current together with STIM1 and Orai1. The
model represents two alternatives for the involvement of TRPC in the store-operated channels.

Back to 1969, Cosens et al. identified a spontaneous Drosophila mutant with altered electroretinogram [5]
that was attributed to a mutation of the so called transient receptor potential (TRP) channel that resulted in
transient, rather than sustained, light-dependent depolarization of the photoreceptors upon Na+ and Ca2+

entry [6]. Drosophila TRP and its homologue TRPL were characterized as Ca2+ permeable channels
activated downstream of phospholipase C [7]. In 1995, two separate groups identified the first human
homolog of the Drosophila TRP channel, TRPC1 [8,9]. After the characterization of TRPC1, a number
of homologs were identified in mammalian cells and grouped into six subfamilies: TRPC (canonical)
comprising seven members (TRPC1-TRPC7), TRPV (vanilloid) including subtypes TRPV1 to TRPV6,
TRPM (melastatin), which comprises eight members (TRPM1-TRPM8), TRPA (ankyrin) consisting
of only one member TRPA1 and TRPP (polycystin) as well as TRPML (mucolipin) comprising three
members each (revised in [10,11]).

The basic structure of TRP channels consists of six transmembrane helical domains (TM1 through
TM6) with a loop between TM5 and TM6 forming the channel pore and N- and C-terminal regions
located in the cytosol. TRP channels are thought to tetramerize to form a 24-helix functional protein
complex. Mammalian TRP channels exhibit different functional domains, including a variable number
of N-terminal ankyrin repeats present in TRPC, TRPV and TRPA that is involved in protein-protein
interaction (revised in [10,12,13]). Remarkably, three members of the TRPM subfamily contain a
catalytic kinase domain in the C-terminal region and TRPC and TRPM channels exhibit a conserved
TRP domain adjacent to TM6, containing a highly conserved sequence named TRP box, involved
in signal transduction coupling and channel gating [14]. In addition, a number of mammalian TRP
members contain N- and/or C-terminal coiled-coil domains that play an important role in channel
multimerization [15] as well as the interaction of TRPC channels with the endoplasmic reticulum
(ER) Ca2+ sensor STIM1 [16]. TRPC members contains a C-terminal calmodulin (CaM)- and inositol
1,4,5-trisphosphate receptor (IP3R)-binding (CIRB) site, which participates in the regulation of TRPC
channel function [17,18].

TRP channels are mostly non-selective cation channels that are permeable to both monovalent
and divalent cations with Ca2+ to Na+ permeability ratios ranging from 0.01 to over 100 [19]. The
pore-forming TM5–TM6 loop has been reported to be highly conserved among all TRP members, and
contains several hydrophobic residues at the beginning of the channel pore. TRP channel gating occurs
in response to a variety of physical and chemical stimuli and leads to both rises in cytosolic Ca2+
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concentration and membrane depolarization, which, in turn, activate a number of cellular functions.
TRP-induced membrane depolarization might also decrease the driving force for Ca2+ influx through
other channels (see Section 3).

Since the identification of the mammalian TRP channels, a considerable attention has been focused
on the role of TRPC1 and other TRPC channels as candidates to conduct Ca2+ influx during SOCE.

Table 1. Biophysical features of store-operated Ca2+ channels. Notes: STIM1 CMD: STIM1
calcium modulating domain; DVF: divalent-free solution; n/d: not determined; STIM1 SOAR:
STIM1Orai1-activating region.

Orai1 Channels Ora1-TRPC Channels References

Current Voltage (I–V)
profile

Inwardly rectifying Inwardly rectifying

[20–22]Positive reversal potential
~ + 50 mV

Positive reversal potential
0 to ~ + 10 mV

Permeability and
Selectivity

Ca2+ K+, Na+, Cs+, Ca2+ and Ba2+

[4,23]Low to Cs3+

Conduct Na+, Li+ and K+

in DVF solutions

Activation Store depletion via STIM1
SOAR region

Store depletion via STIM1 SOAR
and polibasic C-terminus regions [24,25]

Endogenous current size 0.1–0.2 pA/pF at −100 mV [26]

Fast Inactivation

Ca2+

n/d [27,28]
STIM1 CMD

Orai1 68–91 aa

Orai1 137–173 aa

Slow inactivation

Mitochondria

n/d [29–31]STIM1 390–391 aa

SARAF

Inhibitors

2-APB (30–50 µM)

n/d [32–37]

La3+ and Gd3+ (100 µM)

Low pH = 6.7

Synta 66

GSK-7975A
GSK-5503A

AnCOA4 (~5 µM)

2. TRPC Channels in the STIM1–Orai1 Scenario

A new scenario emerged in the study of SOCE after the identification of Orai1 and Stim1 as
the key components of the CRAC (Ca2+ release-activated Ca2+ channels). STIM1 was identified as
the Ca2+ sensor in the ER which communicates the Ca2+ content of the stores to the channels in
the plasma membrane, while Orai1 was identified as the pore subunit of the CRAC channel in the
plasma membrane [38–41]. The expression of splice variants of STIM1 and Orai1 with functional and
biophysical differences have been demonstrated in mammalian cells. STIM1L, a longer splice variant
of STIM1 described in adult human muscle fibers, displays a fast full SOCE activation compared to
STIM1 [42]. Regarding to Orai1, two different variants generated by alternative translation initiation,
Orai1α and Orai1β, have been shown to drive ICRAC and ISOC currents [43,44]. In addition to these
variants, mammalian cells also express other STIM and Orai isoforms involved in the generation of
ICRAC currents. STIM2 is a more sensitive ER Ca2+ sensor than STIM1, but it promotes a weaker CRAC
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channel activation [45]. Three variants of STIM2, (STIM 2.1, STIM2.2, and STIM2.3) with different
roles in the modulation of SOCE have been identified. While STIM2.1 has been described to play an
inhibitory role, STIM2.2 has been shown as an activator of SOCE. The function of the STIM2.3 variant
still remains unclear [46,47]. Orai2 and Orai3 proteins have also been shown to drive ICRAC currents
after depletion of the intracellular stores [48–50] and their regulation and physiological role are less
known as compared to Orai1. Therefore, it is currently widely established that the Orai-STIM complex,
mainly Orai1-STIM1, constitutes the highly selective CRAC channel.

TRPC1 was the first candidate proposed as SOC channel in Chinese hamster ovary cells [51] and
monkey COS cells [52] by the expression of TRPC1A, a splice variant of TRPC1, and the expression
of a full-length cDNA encoding human TRPC1, respectively. In both cases, the consequence was
an increased SOCE after depletion of the intracellular Ca2+ stores. Later, the role of TRPC1 as the
SOC channel was confirmed using different approaches in a large number of human cells, including
submandibular gland cells [53], endothelial cells [54] and platelets [55], among others. However,
the involvement of TRPC channels in SOCE has long been controversial with different studies
providing evidence against a functional role of TRPC channels in SOCE. For instance, overexpression
of TRPC channels, including TRPC3 [56,57], has been found to induce non-capacitative Ca2+ entry
downstream of phospholipase C in a variety of cell models. A major problem for the involvement of
TRPC channels in SOCE is that these channels cannot reproduce the biophysical properties of ICRAC.
Nevertheless, as ICRAC is not the only store-operated Ca2+ current, this observation does not rule
out the possibility that TRPC channels also participate in SOCE under certain scenarios, such as the
assembly with the STIM1-Orai1 complex. In the new STIM1-Orai1 scenario for SOCE, it was soon
reported that both proteins together with TRPC1 are assembled to form a dynamic STIM1-Orai1-TRPC1
ternary complex that drives the ISOC current [22,58–60]. Upon store depletion, STIM1 activation
promotes its oligomerization and translocation to the ER-PM junctions where it binds Orai1 [58,59]
and TRPC1 [59,61,62] in lipid rafts domains, gating both Ca2+channels [63,64]. STIM1 mediates Orai1
activation by the interaction of the cytosolic STIM1-Orai1 activation region (SOAR) of STIM1 [24]
with two STIM1-bindings sites located at the C- and N-termini of Orai1 [65–67]. The SOAR region
is also required for STIM1-TRPC1 interaction; however, it is not sufficient to activate TRPC1 [24].
The activation of TRPC1 requires electrostatic interaction between highly positively charged lysines
(684KK685) located in polybasic lysine-rich domain (K-domain) of the STIM1 C-terminus with the
conserved, negatively charged, aspartate residues in TRPC1 (639DD640) and equivalent residues in
other TRPC channels [25]. However, there is no evidence about the domains of Orai1 and TRPC1
involved in their interaction, suggesting that TRPC1-Orai1 binding could be indirectly mediated by
STIM1 or still unidentified adaptor proteins [68,69].

The first evidence of the dynamic assembly of the STIM1-Orai1-TRPC1 ternary complex was
found using immunofluorescence and confocal microscopy assay in human salivary gland cells. In
resting conditions, STIM1 shows a diffused cytosolic localization while TRPC1 is located in the PM
colocalizing with Orai1, although it is also expressed in the cytosolic region. After Ca2+ store depletion,
STIM1 co-localized in the PM with both proteins, TRPC1 and Orai1, without modifying the TRPC1 and
Orai1 colocalization [59]. Different studies have demonstrated that a functional Orai1 plays an essential
role in the STIM1-Orai1-TRPC1 complex formation using different approaches. In human platelets, the
STIM1-Orai1-TRPC1 ternary complex formation, including Orai1-STIM1 binding, was demonstrated
using immunoprecipitation assays and the electrotransjection with an anti-Orai1 C-terminal antibody
impairs the interaction between STIM1 and TRPC1, as well as SOCE activation after intracellular
Ca2+ store depletion [58]. In Orai1 knockdown HEK-293 by siRNA-mediated gene silencing, cell
transfection with the dominant negative mutants Orai1 E106Q or Orai1R91W, but not with a functional
Orai1 construct, failed to restore SOCE [22,60]. Concerning Orai1 splicing variants, an elegant study
demonstrated that both variants of Orai1, Orai1α and Orai1β, are equally involved in the generation
of ISOC currents in HEK-293 transfected with STIM1, TRPC1 and either Orai1α or Orai1β [43]. This
finding suggests that the STIM1-Orai1-TRPC1 complex might include both Orai1α or Orai1β proteins.
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A model proposed by Cheng and coworkers, in human salivary gland cells, suggests that
depletion of intracellular stores promotes Ca2+ influx via Orai1-STIM1 complex, providing a local
increase in free Ca2+ concentration that induces the translocation of TRPC1 to the vicinity of the
STIM1-Orai1 complex (Figure 2). Beyond the activation of TRPC1 by STIM1, this transition also
leads to the association of TRPC1 and Orai1 in the same complex. Interestingly, this model could
explain the essential role of Orai1 and the lack of strong evidence supporting the direct association
between Orai1 and TRPC1 in the assembly of the STIM1-Orai1-TRPC1 complex [69]. Besides
different biophysical properties, the Orai1-STIM1 complex to mediate the ICRAC current and the
STIM1-Orai1-TRPC1 ternary complex to mediate the ISOC current also display specific temporal and
spatial Ca2+ oscillatory patterns involved in the activation of different physiological functions and in
the pathogenesis of a number of diseases (revised in [70]). For instance, Orai1-STIM1-mediated Ca2+

entry promotes the activation and nuclear translocation of the NFAT (nuclear factor of activated T-cells)
transcription factor, while a TRPC1-dependent Ca2+ entry is responsible for NF-κB transcription factor
activation in human submandibular gland cells [71]. STIM1-Orai1-TRPC1-mediated Ca2+ entry is also
required for platelet aggregation [72], insulin release [73], adipocyte differentiation and adiponectin
secretion [74], among other functions. Moreover, STIM1-Orai1-TRPC1-dependent Ca2+ currents have
been associated to the Ca2+ mobilization responsible for the development of distinct cancer hallmarks
in different cancer cell types, including prostate cancer cells [75] and colon cancer cells [76,77], while
STIM1-Orai1-TRPC1-TRPC4-mediated Ca2+ currents are involved in the Ca2+ remodelling involved
in hypertrophic cardiomyopathy in rat ventricular myocytes [78]. A more recent study has reported
that in anterior pituitary (AP) cells from Orai1-lacking mice TG-induced SOCE as well as Ca2+ entry
evoked by TRH and LHRH were impaired, by contrast, SOCE was unaffected in AP cells from mice
lacking expression of all seven TRPC channels, although spontaneous intracellular Ca2+-oscillations
associated to electrical activity as well as Ca2+ responses to TRH and GHRH were significantly reduced
in the absence of TRPC channels, thus suggesting that SOCE might function independently of TRPC
channels and that Orai1 and TRPC channels, such as TRPC1, might play different functional roles [79].

Despite the findings that proposed the STIM1-Orai1-TRPC1 ternary complex as the SOC channel,
different observations suggest that ORAI1-STIM1 and TRPC1-STIM1 complexes can also drive ISOC

currents depending on the cell type and the components of its Ca2+ signalling toolkit. Hence in cells
with a robust ICRAC, such as Jurkat cells, the Orai1-STIM1 complex is involved in both ICRAC and ISOC

currents [22]. Furthermore, different studies have shown that TRPC1 interacts with STIM1 forming a
complex without the involvement of Orai1 to mediate SOCE in vascular smooth muscle cells with a
contractile phenotype [80]. In human myotubes, where Orai1 has been reported to be essential for
SOCE and differentiation [81,82], the TRPC1-TRPC4-STIM1L complex has been reported to form a SOC
channel whose Ca2+ inward current is required for human myogenesis and to maintain fast repetitive
Ca2+ release in human myotubes [83]. Interestingly, the integration of Orai1 in this complex promotes
an enhanced ICRAC-like current involved in the development of the hypertrophic cardiomyopathy in
rat ventricular myocytes, as described above [78].
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Figure 2. Cartoon depicting the activation of TRPC1 channels upon Ca2+ store depletion. (a) In 
the resting state, TRPC1 shows both plasma membrane and cytosolic localization. (b) Upon Ca2+ 
store depletion, Ca2+ influx via Orai1 has been reported to induce the translocation of 
intracellularly-located TRPC1 to the plasma membrane where it might be activated by STIM1. 
The model shows two alternatives for functional (mediating Ca2+ entry for the translocation of 
TRPC1 to the plasma membrane; left panel) or direct participation of Orai1 in the activation of 
TRPC1 (forming a STIM1–Orai1–TRPC1 ternary complex; right panel). 

3. Modulation of Orai1 Function by TRPC Channels 

As mentioned previously, TRPC channels, especially TRPC1 [22,58,70,77] but also other 
members of the TRPC subfamily, such as TRPC4 [84,85] and TRPC6 [86–89], have been reported 
to conduct Ca2+ entry upon Ca2+ store depletion. However, there is a growing body of evidence 
indicating that TRPC channels play a more complex role shaping Ca2+ signals through Orai1 
channels. 

TRPC5 and TRPC6 show the greatest selectivity for Ca2+ relative to Na+ of the TRPC 
subfamily with Ca2+/Na+ permeability ratios around 9 and 5, respectively, while TRPC4 and 
TRPC1 are approximately equally permeable to Ca2+ and Na+ [90]. The latter means that TRPC 
channel gating leads to Ca2+ and Na+ influx in favor of an electrochemical gradient, which, in turn, 
might attenuate the inward flux of Ca2+ through Orai1 channels in two different manners: (1) 
inducing Ca2+-dependent inactivation of the Orai1 channels and (2) attenuating the driving force 
for Ca2+ entry as a result of membrane depolarization (Figure 3a,b). Concerning the first issue, 
fast Ca2+-dependent Orai1 inactivation has been suggested to be evoked by the interaction of Ca2+ 

Figure 2. Cartoon depicting the activation of TRPC1 channels upon Ca2+ store depletion. (a) In the
resting state, TRPC1 shows both plasma membrane and cytosolic localization. (b) Upon Ca2+ store
depletion, Ca2+ influx via Orai1 has been reported to induce the translocation of intracellularly-located
TRPC1 to the plasma membrane where it might be activated by STIM1. The model shows two alternatives
for functional (mediating Ca2+ entry for the translocation of TRPC1 to the plasma membrane; left panel)
or direct participation of Orai1 in the activation of TRPC1 (forming a STIM1–Orai1–TRPC1 ternary
complex; right panel).

3. Modulation of Orai1 Function by TRPC Channels

As mentioned previously, TRPC channels, especially TRPC1 [22,58,70,77] but also other members
of the TRPC subfamily, such as TRPC4 [84,85] and TRPC6 [86–89], have been reported to conduct Ca2+

entry upon Ca2+ store depletion. However, there is a growing body of evidence indicating that TRPC
channels play a more complex role shaping Ca2+ signals through Orai1 channels.

TRPC5 and TRPC6 show the greatest selectivity for Ca2+ relative to Na+ of the TRPC subfamily with
Ca2+/Na+ permeability ratios around 9 and 5, respectively, while TRPC4 and TRPC1 are approximately
equally permeable to Ca2+ and Na+ [90]. The latter means that TRPC channel gating leads to Ca2+ and
Na+ influx in favor of an electrochemical gradient, which, in turn, might attenuate the inward flux
of Ca2+ through Orai1 channels in two different manners: (1) inducing Ca2+-dependent inactivation
of the Orai1 channels and (2) attenuating the driving force for Ca2+ entry as a result of membrane
depolarization (Figure 3a,b). Concerning the first issue, fast Ca2+-dependent Orai1 inactivation has
been suggested to be evoked by the interaction of Ca2+ entering through the channel itself to cytosolic
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inactivating sites in close proximity to the channel pore [91,92]; however, slow inactivation of Orai1
channels is associated to global increases in cytosolic Ca2+ concentration [93] that might be influenced
by opening of TRPC channels in the vicinity of Orai1. In tumor cells with a gain of function of TRPC
channels, in addition to Ca2+ entry, Na+ influx has been associated to Ca2+ efflux from the mitochondria
due to exchange for Na+, thus resulting in further Ca2+-dependent inactivation of Orai1 channels
(revised in [94]). Furthermore, the opening of TRPC channels might increase the amount of Ca2+

available to SERCA (sarco/endoplasmic reticulum Ca2+-ATPase) pumps and, therefore, store refilling,
thus accelerating the deactivation of Orai1 channels. On the other hand, it has long been reported that
TRP channel opening results in membrane depolarization. A well-known depolarizing TRP channel is
TRPM4, which has been found to depolarize T lymphocytes [95]. Membrane depolarization induced
by TRPC channel gating has been associated to a functional activation of voltage-dependent Ca2+

channels in electrically excitable cells [96,97]. In addition, depolarization evoked by Ca2+ and Na+

influx through TRPC channels leads to subsequent attenuation of the driving force for Ca2+ entry via
Orai1 channels.

TRPC channels have also been reported to modulate the localization of other Ca2+-permeable
channels in the plasma membrane. Schindl and coworkers have reported that co-expression of TRPC1
with TRPV6 down-regulates the plasma membrane expression of the latter [98]. TRPC channels has
been found to be involved in the modulation of cytoskeletal rearrangements [99]. We have recently
reported that TRPC6 modulates the plasma membrane expression of Orai1 and Orai3 channels in
triple negative and luminal, respectively, breast cancer cells. Thus, attenuation of the expression of
TRPC6, either by using interference RNA or by cell treatment with the phenolic compound oleocanthal,
results in a significant decrease in SOCE in these cells [100,101]. TRPC6-dependent plasma membrane
recycling of Orai1 is entirely dependent on Ca2+ and Na+ influx through TRPC6 channels as it is
abolished by expression of the pore-dead dominant-negative TRPC6 mutant [100] (Figure 3c). Whether
this mechanism is mediated by cytoskeletal remodeling remains to be determined.
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in global rises in [Ca2+]c, thus leading to Ca2+-dependent inactivation of Orai1 channels. (c) Some 
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4. Conclusions 

TRP proteins form non-selective cation channels that play an important role in a variety of 
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key components of the CRAC channels that mediate store-operated and highly Ca2+-selective 
currents. However, STIM1 and Orai1 alone are unable to support the store-mediated non-

Figure 3. Overview of the modulation of Orai1 by TRPC channels. Orai1 channel function might be
positively or negatively regulated by TRPC channels in the vicinity. (a) Ca2+ and Na+ entry through
TRPC channels might lead to membrane depolarization and thus attenuation of the electrical gradient
that favors Ca2+ influx via Orai1. (b) Ca2+ entry via TRPC channels participates in global rises in
[Ca2+]c, thus leading to Ca2+-dependent inactivation of Orai1 channels. (c) Some TRPC channels are
required for Orai1 recycling at the plasma membrane.

4. Conclusions

TRP proteins form non-selective cation channels that play an important role in a variety of
cellular functions and sensory transduction. The identification of STIM1 and Orai1 revealed the key
components of the CRAC channels that mediate store-operated and highly Ca2+-selective currents.
However, STIM1 and Orai1 alone are unable to support the store-mediated non-selective cation
currents described in a number of cell types and that is when TRPC1 channels play an important role
as constituents of the SOC channels. In addition to the role of TRPC1 in SOCE, TRPC channels also
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regulate the function of Orai1 in different manners, thus suggesting that TRPC channels play relevant
functional roles in the STIM1-Orai1 scenario.
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