
A Review of Earley-Based Parser for TIG

Victor J. Diaz, Vicente Carrillo, and Miguel Toro

U niversidad de Sevilla
Departamento de Lenguajes y Sistemas Informiticos

Avda. Reina Mercedes s/n, Sevilla 41012, Spain
{ vjdiaz,carrillo }@lsi. us.es

Abstract. Tree Insertion Grammar (TIG) is a compromise between
Context-Free Grammars (CFG) and Tree Adjoining Grammars (TAG),
that combines the efficiency of the former with the strong lexicalizing
power of the latter. In this paper, we present a plain representation of
TIG elementary trees that can be used directly as the input grammar
for the original Earley parser without the additional considerations es
tablished in the Schabes and Waters Earley-based parser for TIG.

1 Introduction

According to Schabes, a formalism is lexicalized when each one of its basic com
position structures contains some terminal symbol [6]. The lexicalization is a very
interesting property from a linguistic point of view (see Abeille in [1]). In fact,
most of the current linguistic theories tend to include information in the lexicon
that can be considered purely syntactic. Furthermore, the time complexity of
the parsers can be reduced when applying to lexicalized formalisms.

Among well-known formalisms in the literature, TAG defined by Joshi, Levy
and Takahashi is a naturally lexicalized formalism [5]. The TAG formalism is
a context-sensitive one, therefore, account for an important computational cost
compared to CFG, see Nederhofin [7] for more details. In general, the class CFG
is not naturally lexicalized, since we can define rules without terminal symbols
in its right side. We can transform a CFG into another CFG' that fulfills this
condition by a transformation called grammar lexicalization. In the literature,
we can find different strategies of CFGs lexicalization that presents different
problems [3].

An interesting formalism with respect to the problem of CFG lexicalization
is Tree Insertion Grammar (TIG), presented by Schabes and Waters in [8]. TIGs
are a compromise between TAGs and CFGs, and are characterized by the fol
lowing: TIGs are cubic-time parsable as CFGs; TIG grammars are a subclass
of TAG grammars, therefore, TIGs are naturally lexicalized. Furthermore, there
are lexicalization algorithms that establish the strong equivalence of both for
malisms.

A TIG is a 5-tuple (L', NT, I, A, S) where L' is a set of terminal symbols,
NT is a set of nonterminal symbols, I is a finite set of finite initial trees, A is a
finite set of finite auxiliary trees, and S is a distinguished nonterminal symbol.
The set I U A is referred to as the set of elementary trees.

733

In each elementary tree, the root and interior- i.e. nonroot, nonleaf-nodes
are labeled with nonterminal symbols. The nodes on the frontier are labeled
with terminal symbols, nonterminal symbols or the empty string (c). In initial
trees, the nonterminal symbols on the frontier are marked for susbstitution. The
root of at least one elementary initial tree must be labeled S. The nonterminal
symbols on the frontier of an auxiliary tree are marked for susbstitution, except
one nonterminal frontier node marked as the foot. The foot must be labeled with
the same label as the root and the mark is normally an asterisk. The path from
the root of an auxiliary tree to the foot is called the spine.

Auxiliary trees in which every nonempty frontier node is to the left of the foot
are called left auxiliary trees. Similarly, auxiliary trees in which every nonempty
frontier node is to the right of the foot are called right auxiliary trees. Other
auxilary trees are called wrapping auxiliary trees.

Frontier nodes labeled with c are referred to as empty. If all the frontier nodes
of an initial tree are empty the tree is referred to as empty. If all the frontier
nodes other than the foot of an auxiliary tree are empty, the tree is referred to
as empty.

With respect to operations, substitution replaces a node marked for substi
tution with an initial tree. Adjunction replaces a node with an auxiliary tree.
TIG does not allow there to be any elementary wrapping auxiliary trees or el
ementary empty auxiliary trees. This ensures that every elementary auxiliary
tree will be uniquely either a left auxiliary tree or a right auxiliary tree.

TIG does not allow a left(right) auxiliary tree to be adjoined on any node that
is on the spine of a right (left) auxiliary tree. Further, no adjunction whatever
is permitted on a node J.l that is to the right (left) of the spine of an elementary
left(right) auxiliary tree T.

TIG allows arbitrarily many simultaneous adjunctions on a single node. Si
multaneous adjunction is specified by two sequences, one of left auxiliary trees
and the other of right auxiliary trees that specify the order of strings correspond
ing to the trees combined.

A TIG derivation starts with an initial tree rooted at S. This tree is repeat
edly extended using substitution and adjunction. A derivation is complete when
every frontier node in the tree(s) derived is labeled with a terminal symbol. By
means of adjunction, complete derivations can be extended to bigger complete
derivations.

To eliminate useless ambiguity in derivations, TIG prohibits adjunction: at
nodes marked for substitution, because the same trees can be created by adjoin
ing on the root of the trees substituted at these nodes; at foot or root nodes of
auxiliary trees, because the same trees can be created by simultaneous adjunc
tion on the nodes the auxiliary trees are adjoined on.

2 Multilayer Elementary Tree Representation

With the purpose of redefining the algorithm of Earley for TIG, Schabes and
Waters [8] introduce a multilayer representation of the elementary trees of the

734

TIG grammars. An elementary tree will be represented by a set of CFG rules.
The symbols in the left side of a rule will correspond with the direct ancestor
node in an elementary tree. The right side of the rules consists of the sequence
of symbols dominated in the elementary tree for the symbol on the left. We will
use greek letters JJ,p,v to denote nodes in elementary trees and subscripts to
indicate the nodes label, e.g., JJX.

In order to specify the role performed by some nodes in an elementary tree,
the set of CFG rules is enriched with the following predicates:

Root(px) when a node JJx is the root of an initial tree
LAux(px) when a node J-LX is the root of a left auxiliary tree

- RAux(J-Lx) when a node JJX is the root of a right auxiliary tree
Sub(JJx) when a node JJx is marked for substitution
Foot(px) when a node JJX is the foot of an auxiliary tree

- Adj(/3, JJX) when an auxiliary tree f3 can be adjoined on a node JJx

Let G = (E, NT, I, A, S) be a TIG and let a1 , ... , an be an input string. The
Earley-style TIG parser collects states into a set called the chart. A state is a
3-tuple [p, i, j], where p is a position in an elementary tree (i.e in a CFG rule
in the set associated to the elementary tree) and 0 :S i :S j :S n are integers
indicating a span of the input string.

The Earley parser for TIGs (see figure) can be defined using the deductive
parsing notation presented by Shieber, Schabes and Pereira [9]. The inference
rules (steps) associated to initialization (1), acceptance (13) and scanning (4)(5)
are interpreted in the classical sense. Predictor and completor steps are rede
fined due to the elementary tree representation used. For each kind of operation
defined in the TIG formalism is defined a predictor/completor step. Then, six
inference rules are grouped in connection with left adjunction (2)(3), right ad
junction (11)(12) and substitution (7)(8). These rules use the predicates above
to filter those operations that are not adjusted to the formal definition of TIG.

Furthermore, a new type of rule (Subtree Traversal) is needed (9)(10) to
traverse correctly the set of CFG rules associated to an elementary tree. The
simultaneous adjunction is performed by the steps adjunction predictor (left
and right) and an additional scanner rule that ignores the foot node (6) of the
auxiliary trees.

3 Plain Elementary Tree Representation

We will introduce a representation of TAGs, presented by Diaz and Toro [2],
that tries to reduce the problems presented above. First of all, we will describe
an alternative notation for trees that uses a word-based representation instead
of the traditional graphical representation. The notation is as follows: a stands
for a E E; X(t1 ... tn) stands for the elementary tree having root X E NT and
direct subtrees h, ... , tn. When X has not children we will use the notation X
instead of X().

735

I nit(p,s) 1-- [p,s •a, 0, 0] (1)

[JlA ea, i, j] !\ LAux(pA) !\ Adj(pA, JlA) 1-- [PA •1, j, j] (2)

[JlA---> ea, i, j] !\ [PA 1•, j, k] !\ LAux(pA) !\ Adj(pA, JlA) 1-- [JlA---> ea, i, k] (3)

[!-LA--->aeva,6,i,j]/\a=a1+li--[!-LA--->ava•,6,i,j+1] (4)

[!-LA -+ a • Va,6, i, j] 1\ a = f 1-- [I-LA ---> ava • ,6, i, j] (5)

[I-LA---> a HB,6, i, j] 1\ Foot(vB) 1-- [I-LA avB • ,6, i, j] (6)

(!-LA-+ ae VB,6,i,j] 1\Sub(vB) 1\Init(pB) 1-- (PB---> •1,j,j] (7)

[!-LA ---> a • VB ,6, i, j] 1\ [PB 1•, j, k] 1\ Sub(vB) 1\ I nit(p B) 1-- [!-LA -+ avB • ,6, i, k] (8)

[JlA-+ a e VB,6, i, j]f-- [VB-+ •1, j,j] (9)

[/-LA---> a e VB,6, i,j] 1\ [vB---> ")'•,j, k]f-- [JlA-+ aVB e ,6, i, k] (10)

[!-LA ---> ae, i, j] 1\ RAux(pA) 1\ Adj(pA, JlA) 1-- [PA ---> •1, j, j] (11)

[!-LA ---> ae, i, j] 1\ [PA -+ 1•, j, k] 1\ RAux(pA) 1\ Adj(pA, !-LA) 1-- [!-LA ---> ae, i, k] (12)

I nit(!-ls) 1\ [!-ls -+ a•, 0, n]I-- Acceptance (13)

Fig. 1. Earley-Based Parser for TIGs

We will transform the word representation of X(t1 ... tn) in a trivially equiv
alent form XL t1 ... tn XR for every nonterminal symbol X. In other words, a
category symbol X splits into two new non terminal symbols, XL and XR, that
will divide the left and right side contexts of the symbol.

For example, the plain representation of an initial tree o: with the form 5(e),
will be SL e SR and respectively SL e 51 s;, e SR for an auxiliary tree (J with the
form S(e, S*, e) beingS* the foot node.

In general, the representation of an auxiliary tree (J will be of the form:
XL r 1 X£ X_R r2 XR where r 1 and r2 are sequences of symbols, being X and X*
the root and foot symbols. If we observe carefully, we can establish that XL r 1 X£
is just the left contextual tree dominated by the root in (J with respect to his
foot node. Similarly, X_R r2 XR will be the right context.

The adjunction operation can also be divided into two sides with respect to
the spine of an auxilary tree. Suppose that (3 is an auxiliary tree X -rooted with
frontier WL X WR being WL and WR sequences of symbols. Let o: be an initial tree
that contains a category X with frontier r 1 w r2 , where r 1 , w ,r2 are sequences of
symbols and w is the string that spans the category X. When we adjunct (3 in
o: at X we will have the frontier r 1 WL w WR r2 . We can see that WL (resp. wR)
is the string that spans the left (resp. right) contextual tree dominated by X in
(3.

Briefly, the trees above can be represented using a plain notation as follows:

736

f3 = XLWLX1 X1wRXR

With this considerations, the next three CFG-based rules can be stated to
translate the elementary trees:

XL -+ WL X£ rule for f3L

XR -+ XR WR rule for f3R

where Sis the label of the root of o:. The plain representation of f3 splits into
two rules representing left and right contextual sides. We eliminate the reference
associated to root symbols in auxiliary trees, because adjunction operation at a
root and foot nodes of an auxiliary tree are equivalent.

As we said, in TIG formalism only left and right auxiliary trees exist. If
the tree is a left auxiliary tree, the right side produces only an empty string E.

Furthermore, it is not allowed any adjunction in the right side of the tree and it
can not be adjoined a right auxiliary tree in the spine. These three constraints
mean that the right part f3R only generates the empty string and, then, this
part is not very important in the definition of a left auxiliary tree. Also, it is
not possible to adjoin a left auxiliary tree in the root and foot nodes but we can
not eliminate the foot node at all because his presence is necessary in order to
obtain multiple adjunctions on the same node. Really, we only need the left side
of the foot node to guarantee this kind of adjunctions. With this considerations
we can eliminate the right side completely. The no-adjunction is represented by
an <-transition. For so much, the left auxiliary trees will have the form:

Respectively, the right auxiliary trees are defined with the following rule:

The nonterminal symbols marked for substitution can not be adjoined. These
symbols do not continue the general norm of being divided into two new non
terminal symbols (left and right contexts), in this way we prevent to substitute
a rule associated with an auxiliary tree.

This representation presents a fundamental advantage with respect to the
multilayer representation: each elementary tree is represented by a rule. This
avoids the navigation through the different levels of a tree and, therefore, the
definition of the parser is simplified. We will see now how all the valid operations
in TIG formalism can be performed using a plain representation.

Left adjunction is equivalent to a substitution in nonterminal symbols sub
scripted with L. We observe that the constraints that exist on the left adjunction
are obtained with this substitution mechanism. It is not allowed to substitute
a rule associated with a right auxiliary tree in the symbols associated with the
right context of the spine, since these symbols do not exist. Then, the adjoining
constraint of an right auxiliary tree in the spine of a left auxiliary tree is ensured.

737

It is not allowed to substitute a rule associated with a right auxiliary tree in the
the right context symbols of left auxiliary tree, since these symbols do not exist
in the rule. This guarantees the adjunction constraint of an right auxiliary tree
in the right side to a left auxiliary tree. It is possible to adjoin a left auxiliary tree
in the foot node. It can seem that this contradict the constraint of adjunction on
the foot node, however, this operation is equivalent to a multiple left adjunction
on a node in a derived tree.

Right adjunction is equivalent to a substitution in nonterminal symbols sub
scripted with R. The same as the left adjunction, all the constraints on the right
adjunction are maintained. Simultaneous adjunction is equivalent to a substitu
tion in L-symbols and later in the R-symbols. With respect to Substitution, the
rules associated with initial trees are the only ones that can be substituted in
the nodes marked for substitution, since the other rules represent auxiliary trees
(labeled with right or left contexts).

4 Reviewing Earley-Based Parser for TIGs

In this section we will review the steps included in the parser presented above
when it is used a plain representation. After some considerations, we will observe
that the obtained parser is equal to the classical Earley parser for CFG [4].

Scanning. The inference rules (4) and (5) are maintained. The rule (6) is not
necessary, since the foot node can be substituted in multiple adjunctions.
This process is equivalent to the operation scan in the Earley parser for
CFG.

- Substitution. The predicates Sub and I nit are not necessary, due to the fact
that the substitution operation is already filtered. Therefore, the inference
rules (7) and (8) are equivalent to the operations predictor and completor in
the Earley parser for CFG, respectively.
Subtree Traversal. The navigation of the trees is not necessary and, then, is
not needed this operation. The rules (9) and (10) are equal to the operations
predictor and completor in the Earley parser for CFG, respectively.

- Left and Right Adjunctions. Neither the predicates LAux and RAux are
necessary, since the auxiliary trees have been labeled with new nonterminal
symbols, nor the predicate Adj. In fact, the rules (2) and (11) is equivalent
to the predictor in the Earley parser for CFGs, and the same the rules (3)
and (12) respect to the completor.

5 Conclusions

The representation of TIG elementary trees can be exploited in order to take
advantage of classical definition of CFGs parser. When using a multilayer rep
resentation, we must include parser rules to navigate in each elementary tree
and predicates to ensure the adjunction constraints. We present an alternative

738

word-based representation that can be used directly as the input grammar for
the original Earley parser for CFGs, without extra considerations.

We argue this alternative representation captures in a more suitable way the
evidence of equivalence expresiveness between CFGs and TICs. Furthermore,
the two-sides interpretation of each symbol reflects the three kind of adjunctions
included in TIG formalisms.

Adding new non terminals to the grammar does not represent a problem when
constructing the derived tree. We can easily register the adjuctions performed
when parsing, since we have only one rule associated with an elementary tree.

References

1. Abeille, A.: Une grammaire lexicalisee d'Arbres adjoints pour le Francais: Applica
tion a l'analyse automatique. Ph. D. Universite de Paris 7, France (1991)

2. Dlaz, V., Toro, M.: Parsing TAGs with Prolog. Joint Conference on Declarative
Programming, AGP'97 eds. Falaschi, M., Navarro, M., and Policrit, A. Grado, Italy
(1997) 359-367

3. Dlaz, M., Toro, M., Carrillo, V.: Un Algoritmo de Lexicalizaci6n de CFG mediante
TAGs. Procesamiento del Lenguaje Natural 19 (1996) 201-208

4. Earley, J.: An Efficient Context-Free Parsing Algorithm. ACM 13(2) (1970) 94-102
5. Joshi, A. K., Levy, L., Takahashi, M.: Tree Adjunct Grammars. Journal of Computer

and Systems Science 10 (1975) 136-163
6. Schabes, Y.: Mathematical and Computational Aspects of Lexicalized Grammars.

Ph. D. University of Pennsylvania, Philadelphia, USA (1990)
7. Nederhof, M.: Solving the Correct-Prefix Property for TAGs. 5th Meeting of Math

ematics of Language. Schloss Dagstuhl, Germany (1997)
8. Schabes, Y., Waters, R.: Tree Insertion Grammars: A Cubic-Time, Parsable For

malism that Lexicalized Context-Free Grammars Without Changing the Trees Pro
duced. Computational Linguistic 21(4) (1995) 479-515

9. Shieber, S., Schabes, Y., Pereira, F.: Principles and Implementation of Deductive
Parsing. Journal of Logic Programming, 4(1&2) (1995) 3-36

