Repositorio de producción científica de la Universidad de Sevilla

Persistent entropy: a scale-invariant topological statistic for analyzing cell arrangements

 

Advanced Search
 
Opened Access Persistent entropy: a scale-invariant topological statistic for analyzing cell arrangements
Cites
Show item statistics
Icon
Export to
Author: Atienza Martínez, María Nieves
Escudero, L. M.
Jiménez Rodríguez, María José
Soriano Trigueros, Manuel
Department: Universidad de Sevilla. Departamento de Matemática Aplicada I (ETSII)
Date: 2019
Published in: ArXiv.org, arXiv:1902.06467
Document type: Article
Abstract: In this work, we develop a method for detecting differences in the topological distribution of cells forming epithelial tissues. In particular, we extract topological information from their images using persistent homology and a summary statistic called persistent entropy. This method is scale invariant, robust to noise and sensitive to global topological features of the tissue. We have found significant differences between chick neuroepithelium and epithelium of Drosophila wing discs in both, larva and prepupal stages. Besides, we have tested our method, with good results, with images of mathematical tesselations that model biological tissues.
Cite: Atienza Martínez, M.N., Escudero, L.M., Jiménez Rodríguez, M.J. y Soriano Trigueros, M. (2019). Persistent entropy: a scale-invariant topological statistic for analyzing cell arrangements. ArXiv.org, arXiv:1902.06467
Size: 1.310Mb
Format: PDF

URI: https://hdl.handle.net/11441/87708

See editor´s version

This work is under a Creative Commons License: 
Attribution-NonCommercial-NoDerivatives 4.0 Internacional

This item appears in the following Collection(s)