Repositorio de producción científica de la Universidad de Sevilla

Técnicas de ajuste de los métodos Kernel para la regresión

 

Advanced Search
 
Opened Access Técnicas de ajuste de los métodos Kernel para la regresión
Cites
Show item statistics
Icon
Export to
Author: Amor Perea, Jorge
Director: Álamo Cantarero, Teodoro
Department: Universidad de Sevilla. Departamento de Ingeniería de Sistemas y Automática
Date: 2018
Document type: Final Degree Work
Academic Title: Universidad de Sevilla. Grado en Ingeniería de Tecnologías Industriales
Abstract: Este trabajo constituye un acercamiento a los métodos kernel para el aprendizaje automático en problemas de regresión. Se ha realizado un estudio sobre el ajuste de dichos métodos para minimizar los errores cometidos en la predicción de secuencias temporales. Para la realización del estudio, se ha trabajado con tres problemas diferentes; predicción de una señal modulada en amplitud con ruido aleatorio, predicción de la media mensual del número de manchas solares de Wolf y predicción de la demanda de energía eléctrica. Se encuentran en este documento todos los algoritmos y programas necesarios para la realización del estudio, aplicando técnicas de validación cruzada para la elección de la mejor solución propuesta posible. El objetivo de este estudio es determinar unas pautas para la elección de los parámetros variables en los métodos kernel y comprobar la mejoría en los resultados al aplicar técnicas de validación cruzada en el área del aprendizaje automático. This paper constitutes an approach to kernel methods for machine learning in regression problems. The document includes a study on the tuning of these methods to minimize errors made in the prediction of temporal sequences. To carry out the study, we have worked with three different problems; prediction of an amplitudemodulated signal with random noise, prediction of Wolf's monthly average sunspot number and prediction of electrical energy demand. All the algorithms and programs necessary to carry out the study are found in this document, applying cross-validation techniques for the selection of the best purposed solution possible. The objective of this study is to determine some guidelines for the election of the variable parameters in the kernel methods and to verify the improvement in the results when applying cross validation techniques in machine learning area.
Cite: Amor Perea, J. (2018). Técnicas de ajuste de los métodos Kernel para la regresión. (Trabajo Fin de Grado Inédito). Universidad de Sevilla, Sevilla.
Size: 6.235Mb
Format: PDF

URI: https://hdl.handle.net/11441/84490

This work is under a Creative Commons License: 
Atribución-NoComercial-CompartirIgual 4.0 Internacional

This item appears in the following Collection(s)