Repositorio de producción científica de la Universidad de Sevilla

Fast vision through frameless event-based sensing and convolutional processing: Application to texture recognition

Opened Access Fast vision through frameless event-based sensing and convolutional processing: Application to texture recognition

Citas

buscar en

Estadísticas
Icon
Exportar a
Autor: Pérez Carrasco, José Antonio
Acha Piñero, Begoña
Serrano Gotarredona, María del Carmen
Camuñas Mesa, Luis Alejandro
Serrano Gotarredona, María Teresa
Linares Barranco, Bernabé
Departamento: Universidad de Sevilla. Departamento de Teoría de la Señal y Comunicaciones
Fecha: 2010
Publicado en: IEEE Transactions on Neural Networks, 21 (4), 609-620.
Tipo de documento: Artículo
Resumen: Address-event representation (AER) is an emergent hardware technology which shows a high potential for providing in the near future a solid technological substrate for emulating brain-like processing structures. When used for vision, AER sensors and processors are not restricted to capturing and processing still image frames, as in commercial frame-based video technology, but sense and process visual information in a pixel-level event-based frameless manner. As a result, vision processing is practically simultaneous to vision sensing, since there is no need to wait for sensing full frames. Also, only meaningful information is sensed, communicated, and processed. Of special interest for brain-like vision processing are some already reported AER convolutional chips, which have revealed a very high computational throughput as well as the possibility of assembling large convolutional neural networks in a modular fashion. It is expected that in a near future we may witness the appearance o...
[Ver más]
Cita: Pérez Carrasco, J.A., Acha Piñero, B., Serrano Gotarredona, M.d.C., Camuñas Mesa, L.A., Serrano Gotarredona, M.T. y Linares Barranco, B. (2010). Fast vision through frameless event-based sensing and convolutional processing: Application to texture recognition. IEEE Transactions on Neural Networks, 21 (4), 609-620.
Tamaño: 1.916Mb
Formato: PDF

URI: https://hdl.handle.net/11441/71324

DOI: 10.1109/TNN.2009.2039943

Ver versión del editor

Mostrar el registro completo del ítem


Esta obra está bajo una Licencia Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internacional

Este registro aparece en las siguientes colecciones