Repositorio de producción científica de la Universidad de Sevilla

Invariant means and thin sets in harmonic analysis with applications to prime numbers

Opened Access Invariant means and thin sets in harmonic analysis with applications to prime numbers

Citas

buscar en

Estadísticas
Icon
Exportar a
Autor: Lefèvre, Pascal
Rodríguez Piazza, Luis
Departamento: Universidad de Sevilla. Departamento de Análisis Matemático
Fecha: 2009-08
Publicado en: Journal of the London Mathematical Society, 80 (1), 72-84.
Tipo de documento: Artículo
Resumen: We first prove a localization principle characterising Lust-Piquard sets. We obtain that the union of two Lust-Piquard sets is a Lust-Piquard set, provided that one of these two sets is closed for the Bohr topology. We also show that the closure. We first prove a localization principle characterizing Lust-Piquard sets. We obtain that the unionof two Lust-Piquard sets is a Lust-Piquard set, provided that one of these two sets is closed forthe Bohr topology. We also show that the closure of the set of prime numbers is a Lust-Piquardset, generalizing results of Lust-Piquard and Meyer, and even that the set of integers whoseexpansion uses fewer than r factors is a Lust-Piquard set. On the other hand, we use randommethods to prove that there are some sets t hat are UC,Λ(q) for every q>2andp-Sidon for everyp>1, but which are not Lust-Piquard sets. This is a consequence of the fact that a uniformly distributed set cannot be a Lust-Piquard set.for every p > 1, but which are not Lust-Piquard s...
[Ver más]
Tamaño: 200.9Kb
Formato: PDF

URI: https://hdl.handle.net/11441/69852

DOI: 10.1112/jlms/jdp016

Ver versión del editor

Mostrar el registro completo del ítem


Esta obra está bajo una Licencia Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internacional

Este registro aparece en las siguientes colecciones