Repositorio de producción científica de la Universidad de Sevilla

A computational algebraic geometry approach to enumerate Malcev magma algebras over finite fields

Opened Access A computational algebraic geometry approach to enumerate Malcev magma algebras over finite fields

Citas

buscar en

Estadísticas
Icon
Exportar a
Autor: Falcón Ganfornina, Óscar Jesús
Falcón Ganfornina, Raúl Manuel
Núñez Valdés, Juan
Departamento: Universidad de Sevilla. Departamento de Geometría y Topología
Universidad de Sevilla. Departamento de Matemática Aplicada I (ETSII)
Fecha: 2016
Publicado en: Mathematical Methods in the Applied Sciences, 39 (16), 4901-4913.
Tipo de documento: Artículo
Resumen: The set of n-dimensional Malcev magma algebras over a finite field can be identified with algebraic sets defined by zero-dimensional radical ideals for which the computation of their reduced Gröbner bases makes feasible their enumeration and distribution into isomorphism and isotopism classes. Based on this computation and the classification of Lie algebras over finite fields given by De Graaf and Strade, we determine the mentioned distribution for Malcev magma algebras of dimension $n\leq 4$. We also prove that every 3-dimensional Malcev algebra is isotopic to a Lie magma algebra. For n=4, this assertion only holds when the characteristic of the base field is distinct of two.
Cita: Falcón Ganfornina, Ó.J., Falcón Ganfornina, R.M. y Núñez Valdés, J. (2016). A computational algebraic geometry approach to enumerate Malcev magma algebras over finite fields. Mathematical Methods in the Applied Sciences, 39 (16), 4901-4913.
Tamaño: 260.4Kb
Formato: PDF

URI: http://hdl.handle.net/11441/67851

DOI: 10.1002/mma.4054

Ver versión del editor

Mostrar el registro completo del ítem


Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivar 4.0 Internacional

Este registro aparece en las siguientes colecciones