Repositorio de producción científica de la Universidad de Sevilla

A computational algebraic geometry approach to enumerate Malcev magma algebras over finite fields

 

Advanced Search
 
Opened Access A computational algebraic geometry approach to enumerate Malcev magma algebras over finite fields
Cites

Show item statistics
Icon
Export to
Author: Falcón Ganfornina, Óscar Jesús
Falcón Ganfornina, Raúl Manuel
Núñez Valdés, Juan
Department: Universidad de Sevilla. Departamento de Geometría y Topología
Universidad de Sevilla. Departamento de Matemática Aplicada I (ETSII)
Date: 2016
Published in: Mathematical Methods in the Applied Sciences, 39 (16), 4901-4913.
Document type: Article
Abstract: The set of n-dimensional Malcev magma algebras over a finite field can be identified with algebraic sets defined by zero-dimensional radical ideals for which the computation of their reduced Gröbner bases makes feasible their enumeration and distribution into isomorphism and isotopism classes. Based on this computation and the classification of Lie algebras over finite fields given by De Graaf and Strade, we determine the mentioned distribution for Malcev magma algebras of dimension $n\leq 4$. We also prove that every 3-dimensional Malcev algebra is isotopic to a Lie magma algebra. For n=4, this assertion only holds when the characteristic of the base field is distinct of two.
Cite: Falcón Ganfornina, Ó.J., Falcón Ganfornina, R.M. y Núñez Valdés, J. (2016). A computational algebraic geometry approach to enumerate Malcev magma algebras over finite fields. Mathematical Methods in the Applied Sciences, 39 (16), 4901-4913.
Size: 260.4Kb
Format: PDF

URI: http://hdl.handle.net/11441/67851

DOI: 10.1002/mma.4054

See editor´s version

This work is under a Creative Commons License: 

This item appears in the following Collection(s)