Repositorio de producción científica de la Universidad de Sevilla

A computable measure of algorithmic probability by finite approximations with an application to integer sequences

Opened Access A computable measure of algorithmic probability by finite approximations with an application to integer sequences
Estadísticas
Icon
Exportar a
Autor: Soler Toscano, Fernando
Zenil, Hector
Departamento: Universidad de Sevilla. Departamento de Filosofía y Lógica y Filosofía de la Ciencia
Fecha: 2017
Publicado en: Complexity, 1-20.
Tipo de documento: Artículo
Resumen: Given the widespread use of lossless compression algorithms to approximate algorithmic (Kolmogorov-Chaitin) complexity, and that, usually, generic lossless compression algorithms fall short at characterizing features other than statistical ones not different to entropy evaluations; here we explore an alternative and complementary approach. We study formal properties of a Levin-inspired measure m calculated from the out-put distribution of small Turing machines. We introduce and justify finite approximations mk that have been used in some applications as an alternative to lossless compression algorithms for approximating algorithmic (Kolmogorov-Chaitin) complexity. We provide proofs of the relevant properties of both m and mk and compare them to Levin's Universal Distribution. We provide error estimations of mk with respect to m. Finally, we present an application to integer sequences from the Online Encyclopedia of Integer Sequences, which suggests that our AP-based measures may chara...
[Ver más]
Cita: Soler Toscano, F. y Zenil, H. (2017). A computable measure of algorithmic probability by finite approximations with an application to integer sequences. Complexity, 1-20.
Tamaño: 573.4Kb
Formato: PDF

URI: http://hdl.handle.net/11441/64265

Ver versión del editor

Mostrar el registro completo del ítem


Esta obra está bajo una Licencia Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internacional

Este registro aparece en las siguientes colecciones