Show simple item record

dc.creatorKohlenbach, Ulrich Wilhelmes
dc.creatorLeustean, Laurentiues
dc.creatorNicolae, Adrianaes
dc.date.accessioned2017-09-07T11:31:07Z
dc.date.available2017-09-07T11:31:07Z
dc.date.issued2017
dc.identifier.citationAnónimo. .
dc.identifier.issn0219-1997es
dc.identifier.issn1793-6683es
dc.identifier.urihttp://hdl.handle.net/11441/64257
dc.description.abstractWe provide in a unified way quantitative forms of strong convergence results for numerous iterative procedures which satisfy a general type of Fej´er monotonicity where the convergence uses the compactness of the underlying set. These quantitative versions are in the form of explicit rates of so-called metastability in the sense of T. Tao. Our approach covers examples ranging from the proximal point algorithm for maximal monotone operators to various fixed point iterations (xn) for firmly nonexpansive, asymptotically nonexpansive, strictly pseudo-contractive and other types of mappings. Many of the results hold in a general metric setting with some convexity structure added (so-called W-hyperbolic spaces). Sometimes uniform convexity is assumed still covering the important class of CAT(0)-spaces due to Gromov.es
dc.description.sponsorshipGerman Science Foundationes
dc.description.sponsorshipRomanian National Authority for Scientific Researches
dc.formatapplication/pdfes
dc.language.isoenges
dc.publisherWorld Scientifices
dc.relation.ispartofCommunications in Contemporary Mathematics, 1750015-1-1750015-42.
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectFejér monotone sequenceses
dc.subjectQuantitative convergencees
dc.subjectMetastabilityes
dc.subjectProximal point algorithmes
dc.subjectFirmly nonexpansive mappingses
dc.subjectStrictly pseudo-contractive mappingses
dc.subjectProof mininges
dc.titleQuantitative results on Fejér monotone sequenceses
dc.typeinfo:eu-repo/semantics/articlees
dc.type.versioninfo:eu-repo/semantics/submittedVersiones
dc.rights.accessrightsinfo:eu-repo/semantics/openAccesses
dc.contributor.affiliationUniversidad de Sevilla. Departamento de Análisis Matemáticoes
dc.relation.projectIDKO 1737/5-2es
dc.relation.projectIDPN-II-ID-PCE-2011-3-0383es
dc.relation.projectIDPN-II-RU-PD-2012-3-0152es
dc.relation.publisherversionhttp://www.worldscientific.com/doi/pdf/10.1142/S0219199717500158es
dc.identifier.doi10.1142/S0219199717500158es
dc.contributor.groupUniversidad de Sevilla. FQM127: Análisis Funcional no Lineales
idus.format.extent39 p.es
dc.journaltitleCommunications in Contemporary Mathematicses
dc.publication.initialPage1750015-1es
dc.publication.endPage1750015-42es
dc.contributor.funderDeutsche Forschungsgemeinschaft / German Research Foundation (DFG)
dc.contributor.funderRomanian National Authority for Scientific Research

FilesSizeFormatViewDescription
Quantitative results on Fejér ...419.2KbIcon   [PDF] View/Open  

This item appears in the following collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Except where otherwise noted, this item's license is described as: Attribution-NonCommercial-NoDerivatives 4.0 Internacional