Mostrar el registro sencillo del ítem

Artículo

dc.creatorKim, Jiyoones
dc.creatorKim, Eunjunges
dc.creatorLópez Maury, Luises
dc.creatorBähler, Jürg Ürges
dc.creatorRoe, Junghyees
dc.date.accessioned2017-05-18T09:42:26Z
dc.date.available2017-05-18T09:42:26Z
dc.date.issued2014
dc.identifier.citationKim, J., Kim, E., López Maury, L., Bähler, J.Ü. y Roe, J. (2014). A metabolic strategy to enhance long-term survival by Phx1 through stationary phase-specific pyruvate decarboxylases in fission yeast. Aging, 6 (7), 587-601.
dc.identifier.issn1945-4589es
dc.identifier.urihttp://hdl.handle.net/11441/60015
dc.description.abstractIn the fission yeast Schizosaccharomyces pombe, the stationary phase‐specific transcription factor Phx1 contributes to long‐term survival, stress tolerance, and meiosis. We identified Phx1‐dependent genes through transcriptome analysis, and further analyzed those related with carbohydrate and thiamine metabolism, whose expression decreased in Δphx1. Consistent with mRNA changes, the level of thiamine pyrophosphate (TPP) and TPP‐utilizing pyruvate decarboxylase activity that converts pyruvate to acetaldehyde were also reduced in the mutant. Therefore, Phx1 appears to shift metabolic flux by diverting pyruvate from the TCA cycle and respiration to ethanol fermentation. Among the four predicted genes for pyruvate decarboxylase, only the Phx1‐dependent genes (pdc201+ and pdc202+) contributed to longterm survival as judged by mutation and overexpression studies. These findings indicate that the Phx1‐mediated long‐term survival is achieved primarily through increasing the synthesis and activity of pyruvate decarboxylase. Consistent with this hypothesis, we observed that Phx1 curtailed respiration when cells entered stationary phase. Introduction of Δphx1 mutation compromised the long‐lived phenotypes of Δpka1 and Δsck2 mutants that are devoid of pro‐aging kinases of nutrient‐signalling pathways, and of the Δpyp1 mutant with constitutively activated stress‐responsive kinase Sty1. Therefore, achievement of long‐term viability through both nutrient limitation and anti‐stress response appears to be dependent on Phx1es
dc.formatapplication/pdfes
dc.language.isoenges
dc.publisherImpact Journalses
dc.relation.ispartofAging, 6 (7), 587-601.
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectPhx1es
dc.subjectStationary phasees
dc.subjectLong‐term survivales
dc.subjectMetabolic fluxes
dc.subjectPyruvate decarboxylaseses
dc.subjectEthanoles
dc.titleA metabolic strategy to enhance long-term survival by Phx1 through stationary phase-specific pyruvate decarboxylases in fission yeastes
dc.typeinfo:eu-repo/semantics/articlees
dc.type.versioninfo:eu-repo/semantics/publishedVersiones
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.contributor.affiliationUniversidad de Sevilla. Departamento de Bioquímica Vegetal y Biología Moleculares
dc.relation.publisherversion10.18632/aging.100682es
idus.format.extent15 p.es
dc.journaltitleAginges
dc.publication.volumen6es
dc.publication.issue7es
dc.publication.initialPage587es
dc.publication.endPage601es

FicherosTamañoFormatoVerDescripción
A metabolic strategy.pdf1.507MbIcon   [PDF] Ver/Abrir  

Este registro aparece en las siguientes colecciones

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como: Attribution-NonCommercial-NoDerivatives 4.0 Internacional