Repositorio de producción científica de la Universidad de Sevilla

On the Takens-Bogdanov Bifurcation in the Chua’s Equation

 

Búsqueda avanzada
 
Opened Access On the Takens-Bogdanov Bifurcation in the Chua’s Equation
Citas
Estadísticas
Icon
Exportar a
Autor: Algaba Durán, Antonio
Freire Macías, Emilio
Gamero Gutiérrez, Estanislao
Rodriguez Luis, Alejandro José
Departamento: Universidad de Sevilla. Departamento de Matemática Aplicada II (ETSI)
Fecha: 1999
Publicado en: IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, E82-A (9), 1722-1728.
Tipo de documento: Artículo
Resumen: The analysis of the Takens-Bogdanov bifurcation of the equilibrium at the origin in the Chua’s equation with a cubic nonlinearity is carried out. The local analysis provides, in first approximation, different bifurcation sets, where the presence of several dynamical behaviours (including periodic, homoclinic and heteroclinic orbits) is predicted. The local results are used as a guide to apply the adequate numerical methods to obtain a global understanding of the bifurcation sets. The study of the normal form of the Takens-Bogdanov bifurcation shows the presence of a degenerate (codimension-three) situation, which is analyzed in both homoclinic and heteroclinic cases.
Cita: Algaba Durán, A., Freire Macías, E., Gamero Gutiérrez, E. y Rodriguez Luis, A.J. (1999). On the Takens-Bogdanov Bifurcation in the Chua’s Equation. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, E82-A (9), 1722-1728.
Tamaño: 679.7Kb
Formato: PDF

URI: http://hdl.handle.net/11441/58672

Ver versión del editor

Salvo que se indique lo contrario, los contenidos de esta obra estan sujetos a la licencia de Creative Commons: 
Attribution-NonCommercial-NoDerivatives 4.0 Internacional

Este registro aparece en las siguientes colecciones