Repositorio de producción científica de la Universidad de Sevilla

3D realization of two triangulations of a onvex polygon


Advanced Search

Show simple item record

dc.creator Bereg, Sergey es 2017-03-01T13:10:32Z 2017-03-01T13:10:32Z 2004
dc.description.abstract We study the problem of construction of a convex 3-polytope whose (i) shadow boundary has n vertices and (ii) two hulls, upper and lower, are isomorphic to two given triangulations of a convex n-gon. Barnette [℄ D. W. Barnette. Projections of 3-polytopes. Israel J. Math., 8:304{308, 1970] proved the existence of a convex 3-polytope in general case. We show that, in our case, a polytope can be constructed using an operation of edge creation. es
dc.format application/pdf es
dc.language.iso eng es
dc.rights Attribution-NonCommercial-NoDerivatives 4.0 Internacional *
dc.rights.uri *
dc.subject Triangulation es
dc.subject Convex polytope es
dc.subject Steinitz theorem es
dc.title 3D realization of two triangulations of a onvex polygon es
dc.type info:eu-repo/semantics/conferenceObject es
dc.type.version info:eu-repo/semantics/publishedVersion es
dc.rights.accessrights info:eu-repo/semantics/openAccess es
idus.format.extent 4 p. es
dc.eventtitle 20th European Workshop on Computational Geometry es
dc.eventinstitution Sevilla es
Size: 165.7Kb
Format: PDF

This item appears in the following Collection(s)

Show simple item record