Repositorio de producción científica de la Universidad de Sevilla

Classifying States of a Finite Markov Chain with Membrane Computing

Opened Access Classifying States of a Finite Markov Chain with Membrane Computing

Citas

buscar en

Estadísticas
Icon
Exportar a
Autor: Cardona, Mónica
Colomer, M. Angels
Pérez Jiménez, Mario de Jesús
Zaragoza, Alba
Departamento: Universidad de Sevilla. Departamento de Ciencias de la Computación e Inteligencia Artificial
Fecha: 2006
Publicado en: Membrane Computing. WMC 2006. Lecture Notes in Computer Science, vol 4361
ISBN/ISSN: 978-3-540-69088-7
Tipo de documento: Capítulo de Libro
Resumen: In this paper we present a method to classify the states of a finite Markov chain through membrane computing. A specific P system with external output is designed for each boolean matrix associated with a finite Markov chain. The computation of the system allows us to decide the convergence of the process because it determines in the environment the classification of the states (recurrent, absorbent, and transient) as well as the periods of states. The amount of resources required in the construction is polynomial in the number of states of the Markov chain.
Tamaño: 541.8Kb
Formato: PDF

URI: http://hdl.handle.net/11441/53544

DOI: 10.1007/11963516_17

Ver versión del editor

Mostrar el registro completo del ítem


Esta obra está bajo una Licencia Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internacional

Este registro aparece en las siguientes colecciones