Opened Access A digital index theorem
Cites

Show item statistics
Icon
Export to
Author: Domínguez Murillo, Eladio
Francés Román, Ángel Ramón
Ayala Gómez, Rafael
Quintero Toscano, Antonio Rafael
Department: Universidad de Sevilla. Departamento de Geometría y Topología
Date: 2001-11
Published in: International Journal of Pattern Recognition and Artificial Intelligence, 15 (7), 1031-1052.
Document type: Article
Abstract: This paper is devoted to prove a Digital Index Theorem for digital (n − 1)-manifolds in a digital space (Rn, f), where f belongs to a large family of lighting functions on the standard cubical decomposition Rn of the n-dimensional Euclidean space. As an immediate consequence we obtain the corresponding theorems for all (α, β)-surfaces of Kong-Roscoe, with α, β ∈ {6, 18, 26} and (α, β) 6≠(6, 6),(18, 26),(26, 26), as well as for the strong 26-surfaces of Bertrand-Malgouyres.
Cite: Domínguez Murillo, E., Francés Román, Á.R., Ayala Gómez, R. y Quintero Toscano, A.R. (2001). A digital index theorem. International Journal of Pattern Recognition and Artificial Intelligence, 15 (7), 1031-1052.
Size: 554.5Kb
Format: PDF

URI: http://hdl.handle.net/11441/48852

DOI: 10.1142/S0218001401001362

See editor´s version

This work is under a Creative Commons License: 
Attribution-NonCommercial-NoDerivatives 4.0 Internacional

This item appears in the following Collection(s)