Show simple item record

dc.contributor.advisor Muro Jiménez, Fernando es
dc.creator Maes, Jeroen es
dc.date.accessioned 2016-11-11T11:17:57Z
dc.date.available 2016-11-11T11:17:57Z
dc.date.issued 2016-10-28
dc.identifier.citation Maes, J. (2016). Derived homotopy algebras. (Tesis doctoral inédita). Universidad de Sevilla, Sevilla.
dc.identifier.uri http://hdl.handle.net/11441/48473
dc.description.abstract Derived A-algebras are derived and homotopy invariant versions of differential graded algebras. They were introduced by Steffen Sagave in 20 0 in order to construct minimal models for diferential graded algebras over arbitrary commutative rings. Muriel Livernet, Constanze Roitzheim, and Sarah Whitehouse showed in 2013 how they can be viewed as algebras over the minimal model of the operad encoding bicomplexes with a compatible associative multiplication. We extend their work for the associative operad to a general quadratic Koszul operad O satisfying standard projectivity assumptions. This leads to the new notion of derived homotopy O-algebra, where minimal models for O-algebras are defined. We explicitly compute generating operations and relations when O is the associative operad, the commutative operad, and the operad encoding Lie algebras. es
dc.format application/pdf es
dc.language.iso deu es
dc.rights Attribution-NonCommercial-NoDerivatives 4.0 Internacional *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/4.0/ *
dc.title Derived homotopy algebras es
dc.type info:eu-repo/semantics/doctoralThesis es
dc.type.version info:eu-repo/semantics/publishedVersion es
dc.rights.accessrights info:eu-repo/semantics/openAccess es
dc.contributor.affiliation Instituto de Matemáticas de la Universidad de Sevilla (Antonio de Castro Brzezicki) es
dc.contributor.group Universidad de Sevilla. FQM218: Geometria Algebraica, Sistemas Diferenciales y Singularidades es
idus.format.extent 168 p. es
dc.identifier.idus https://idus.us.es/xmlui/handle/11441/48473
Size: 1.003Mb
Format: PDF

This item appears in the following Collection(s)

Show simple item record