Repositorio de producción científica de la Universidad de Sevilla

Determining asymptotic behavior from the dynamics on attracting sets

Opened Access Determining asymptotic behavior from the dynamics on attracting sets

Citas

buscar en

Estadísticas
Icon
Exportar a
Autor: Langa Rosado, José Antonio
Robinson, James C.
Departamento: Universidad de Sevilla. Departamento de Ecuaciones Diferenciales y Análisis Numérico
Fecha: 1999-04
Publicado en: Journal of Dynamics and Differential Equations, 11 (2), 319-331.
Tipo de documento: Artículo
Resumen: Two tracking properties for trajectories on attracting sets are studied. We prove that trajectories on the full phase space can be followed arbitrarily closely by skipping from one solution on the global attractor to another. A sufficient condition for asymptotic completeness of invariant exponential attractors is found, obtaining similar results as in the theory of inertial manifolds. Furthermore, such sets are shown to be retracts of the phase space, which implies that they are simply connected.
Cita: Langa Rosado, J.A. y Robinson, J.C. (1999). Determining asymptotic behavior from the dynamics on attracting sets. Journal of Dynamics and Differential Equations, 11 (2), 319-331.
Tamaño: 176.0Kb
Formato: PDF

URI: http://hdl.handle.net/11441/47885

DOI: 10.1023/A:1021933514285

Ver versión del editor

Mostrar el registro completo del ítem


Esta obra está bajo una Licencia Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internacional

Este registro aparece en las siguientes colecciones