Repositorio de producción científica de la Universidad de Sevilla

Finite element approximation of nematic liquid crystal flows using a saddle-point structure

Opened Access Finite element approximation of nematic liquid crystal flows using a saddle-point structure

Citas

buscar en

Estadísticas
Icon
Exportar a
Autor: Badia Rodríguez, Santiago
Guillén González, Francisco Manuel
Gutiérrez Santacreu, Juan Vicente
Departamento: Universidad de Sevilla. Departamento de Ecuaciones Diferenciales y Análisis Numérico
Fecha: 2011-02-20
Publicado en: Journal of Computational Physics, 230 (4), 1686-1706.
Tipo de documento: Artículo
Resumen: In this work, we propose finite element schemes for the numerical approximation of nematic liquid crystal flows, based on a saddle-point formulation of the director vector sub-problem. It introduces a Lagrange multiplier that allows to enforce the sphere condition. In this setting, we can consider the limit problem (without penalty) and the penalized problem (using a Ginzburg-Landau penalty function) in a unified way. Further, the resulting schemes have an stable behavior with respect to the value of the penalty parameter, a key difference with respect to the existing schemes. Two different methods have been considered for the time integration. First, we have considered an implicit algorithm that is unconditionally stable and energy preserving. The linearization of the problem at every time step value can be performed using a quasi-Newton method that allows to decouple fluid velocity and director vector computations for every tangent problem. Then, we have designed a linear semi-im...
[Ver más]
Cita: Badia Rodríguez, S., Guillén González, F.M. y Gutiérrez Santacreu, J.V. (2011). Finite element approximation of nematic liquid crystal flows using a saddle-point structure. Journal of Computational Physics, 230 (4), 1686-1706.
Tamaño: 817.4Kb
Formato: PDF

URI: http://hdl.handle.net/11441/47881

DOI: 10.1016/j.jcp.2010.11.033

Ver versión del editor

Mostrar el registro completo del ítem


Esta obra está bajo una Licencia Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internacional

Este registro aparece en las siguientes colecciones