Repositorio de producción científica de la Universidad de Sevilla

The bi-criteria doubly weighted center-median path problem on a tree

Opened Access The bi-criteria doubly weighted center-median path problem on a tree

Citas

buscar en

Estadísticas
Icon
Exportar a
Autor: Puerto Albandoz, Justo
Rodríguez Chía, Antonio Manuel
Tamir, Arie
Pérez Brito, Dionisio
Departamento: Universidad de Sevilla. Departamento de Estadística e Investigación Operativa
Fecha: 2006-07
Publicado en: Networks, 47 (4), 237-247.
Tipo de documento: Artículo
Resumen: Given a tree network T with n nodes, let PL be the subset of all discrete paths whose length is bounded above by a prespecified value L. We consider the location of a path-shaped facility P ∈ PL, where customers are represented by the nodes of the tree. We use a bi-criteria model to represent the total transportation cost of the customers to the facility. Each node is associated with a pair of nonnegative weights: the center-weightand the median-weight. In this doubly weighted model, a path P is assigned a pair of values (MAX (P ), SUM (P )),which are, respectively, the maximum center-weighted distance and the sum of the median-weighted distances from P to the nodes of the tree. Viewing PL and the planar set {(MAX (P), SUM (P )) : P ∈ PL} as the decisionspace and the bi-criteria or outcome space respectively,we focus on finding all the nondominated points of the bi-criteria space. We prove that there are at most 2n non-dominated outcomes, even though the total number of efficient paths c...
[Ver más]
Cita: Puerto Albandoz, J., Rodríguez Chía, A.M., Tamir, A. y Pérez Brito, D. (2006). The bi-criteria doubly weighted center-median path problem on a tree. Networks, 47 (4), 237-247.
Tamaño: 262.4Kb
Formato: PDF

URI: http://hdl.handle.net/11441/47847

DOI: 10.1002/net.20112

Ver versión del editor

Mostrar el registro completo del ítem


Esta obra está bajo una Licencia Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internacional

Este registro aparece en las siguientes colecciones