Opened Access Furstenberg sets for a fractal set of directions

Citas

buscar en

Estadísticas
Icon
Exportar a
Autor: Molter, Úrsula María
Rela, Ezequiel
Departamento: Universidad de Sevilla. Departamento de Análisis Matemático
Fecha: 2012-08
Publicado en: Proceedings of the American Mathematical Society, 140 (8), 2753-2765.
Tipo de documento: Artículo
Resumen: In this paper we study the behavior of the size of Furstenberg sets with respect to the size of the set of directions defining it. For any pair α, β ∈ (0, 1], we will say that a set E ⊂ R2 is an Fαβ-set if there is a subset L of the unit circle of Hausdorff dimension at least β and, for each direction e in L, there is a line segment e in the direction of e such that the Hausdorff dimension of the set E∩ e is equal to or greater than α. The problem is considered in the wider scenario of generalized Hausdorff measures, giving estimates on the appropriate dimension functions for each class of Furstenberg sets. As a corollary of our main results, we obtain that dim(E) ≥ max {α + β 2 ; 2α + β − 1} for any E ∈ Fαβ. In particular we are able to extend previously known results to the “endpoint” α = 0 case.
Cita: Molter, Ú.M. y Rela, E. (2012). Furstenberg sets for a fractal set of directions. Proceedings of the American Mathematical Society, 140 (8), 2753-2765.
Tamaño: 194.3Kb
Formato: PDF

URI: http://hdl.handle.net/11441/47719

DOI: 10.1090/S0002-9939-2011-11111-0

Ver versión del editor

Mostrar el registro completo del ítem


Esta obra está bajo una Licencia Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internacional

Este registro aparece en las siguientes colecciones