Repositorio de producción científica de la Universidad de Sevilla

The Szlenk index and the fixed point property under renorming

Opened Access The Szlenk index and the fixed point property under renorming

Citas

buscar en

Estadísticas
Icon
Exportar a
Autor: Domínguez Benavides, Tomás
Departamento: Universidad de Sevilla. Departamento de Análisis Matemático
Fecha: 2010
Publicado en: Fixed Point Theory and Applications, 2010, 1-9.
Tipo de documento: Artículo
Resumen: Assume that X is a Banach space such that its Szlenk index Sz X is less than or equal to the first infinite ordinal ω. We prove that X can be renormed in such a way that X with the resultant norm satisfies R X < 2, where R · is the García-Falset coefficient. This leads us to prove that if X is a Banach space which can be continuously embedded in a Banach space Y with Sz Y ≤ ω, then, X can be renormed to satisfy the w-FPP. This result can be applied to Banach spaces which can be embedded in C K , where K is a scattered compact topological space such that K ω ∅. Furthermore, for a Banach space X, ·, we consider a distance in the space P of all norms in X which are equivalent to · for which P becomes a Baire space. If Sz X ≤ ω, we show that for almost all norms in the sense of porosity in P, X satisfies the w-FPP. For general reflexive spaces independently of the Szlenk index, we prove another strong generic result in the sense of Baire category.
Cita: Domínguez Benavides, T. (2010). The Szlenk index and the fixed point property under renorming. Fixed Point Theory and Applications, 2010, 1-9.
Tamaño: 203.1Kb
Formato: PDF

URI: http://hdl.handle.net/11441/45772

DOI: 10.1155/2010/268270

Ver versión del editor

Mostrar el registro completo del ítem


Esta obra está bajo una Licencia Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internacional

Este registro aparece en las siguientes colecciones