Repositorio de producción científica de la Universidad de Sevilla

A new div-curl result. Applications to the homogenization of elliptic systems and to the weak continuity of the Jacobian

Opened Access A new div-curl result. Applications to the homogenization of elliptic systems and to the weak continuity of the Jacobian

Citas

buscar en

Estadísticas
Icon
Exportar a
Autor: Briane, Marc
Casado Díaz, Juan
Departamento: Universidad de Sevilla. Departamento de Ecuaciones Diferenciales y Análisis Numérico
Fecha: 2016-04-05
Publicado en: Journal of Differential Equations, 260 (7), 5678-5725.
Tipo de documento: Artículo
Resumen: In this paper a new div-curl result is established in an open set Ω of R N , N ≥ 2, for the product of two sequences of vector-valued functions which are bounded respectively in Lp (Ω)N and Lq (Ω)N , with 1/p + 1/q = 1 + 1/(N − 1), and whose respectively divergence and curl are compact in suitable spaces. We also assume that the product converges weakly in W−1,1 (Ω). The key ingredient of the proof is a compactness result for bounded sequences in W1,q(Ω), based on the imbedding of W1,q(SN−1) into Lp ′ (SN−1) (SN−1 the unit sphere of R N ) through a suitable selection of annuli on which the gradients are not too high, in the spirit of [26, 32]. The div-curl result is applied to the homogenization of equi-coercive systems whose coefficients are equi-bounded in Lρ (Ω) for some ρ > N−1 2 if N > 2, or in L1 (Ω) if N = 2. It also allows us to prove a weak continuity result for the Jacobian for bounded sequences in W1,N−1 (Ω) satisfying an alternative assumption to the L∞-strong estimate o...
[Ver más]
Cita: Briane, M. y Casado Díaz, J. (2016). A new div-curl result. Applications to the homogenization of elliptic systems and to the weak continuity of the Jacobian. Journal of Differential Equations, 260 (7), 5678-5725.
Tamaño: 453.9Kb
Formato: PDF

URI: http://hdl.handle.net/11441/45733

DOI: 10.1016/j.jde.2015.12.029

Ver versión del editor

Mostrar el registro completo del ítem


Esta obra está bajo una Licencia Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internacional

Este registro aparece en las siguientes colecciones