Repositorio de producción científica de la Universidad de Sevilla

Asymptotically nonexpansive mappings in modular function spaces

 

Advanced Search
 
Opened Access Asymptotically nonexpansive mappings in modular function spaces
Cites

Show item statistics
Icon
Export to
Author: Domínguez Benavides, Tomás
Khamsi, Mohamed Amine
Samadi, Sedki
Department: Universidad de Sevilla. Departamento de Análisis Matemático
Date: 2002-01-15
Published in: Journal of Mathematical Analysis and Applications, 265 (2), 249-263.
Document type: Article
Abstract: In this paper, we prove that if ρ is a convex, σ-finite modular function satisfying a ∆2-type condition, C a convex, ρ-bounded, ρ-a.e. compact subset of Lρ and T : C → C a ρ-asymptotically nonexpansive mapping, then T has a fixed point. In particular, any asymptotically nonexpansive self-map defined on a convex subset of L1 (Ω, µ) which is compact for the topology of local convergence in measure has a fixed point.
Cite: Domínguez Benavides, T., Khamsi, M.A. y Samadi, S. (2002). Asymptotically nonexpansive mappings in modular function spaces. Journal of Mathematical Analysis and Applications, 265 (2), 249-263.
Size: 216.1Kb
Format: PDF

URI: http://hdl.handle.net/11441/45283

DOI: 10.1006/jmaa.2000.7275

See editor´s version

This work is under a Creative Commons License: 
Attribution-NonCommercial-NoDerivatives 4.0 Internacional

This item appears in the following Collection(s)