Repositorio de producción científica de la Universidad de Sevilla

Interface evolution: the Hele-Shaw and Muskat problems.

Opened Access Interface evolution: the Hele-Shaw and Muskat problems.

Citas

buscar en

Estadísticas
Icon
Exportar a
Autor: Córdoba Barba, Antonio
Córdoba Gazolaz, Diego
Gancedo García, Francisco
Departamento: Universidad de Sevilla. Departamento de Análisis Matemático
Fecha: 2011
Publicado en: Annals of Mathematics, 173, 477-542.
Tipo de documento: Artículo
Resumen: We study the dynamics of the interface between two incompressible 2-D flows where the evolution equation is obtained from Darcy’s law. The free boundary is given by the discontinuity among the densities and viscosities of the fluids. This physical scenario is known as the two dimensional Muskat problem or the two-phase Hele-Shaw flow. We prove local-existence in Sobolev spaces when, initially, the difference of the gradients of the pressure in the normal direction has the proper sign, an assumption which is also known as the Rayleigh-Taylor condition.
Cita: Córdoba Barba, A., Córdoba Gazolaz, D. y Gancedo García, F. (2011). Interface evolution: the Hele-Shaw and Muskat problems.. Annals of Mathematics, 173, 477-542.
Tamaño: 399.4Kb
Formato: PDF

URI: http://hdl.handle.net/11441/45171

DOI: 10.4007/annals.2011.173.1.10

Ver versión del editor

Mostrar el registro completo del ítem


Esta obra está bajo una Licencia Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internacional

Este registro aparece en las siguientes colecciones