Repositorio de producción científica de la Universidad de Sevilla

Turning waves and breakdown for incompressible flows

Opened Access Turning waves and breakdown for incompressible flows

Citas

buscar en

Estadísticas
Icon
Exportar a
Autor: Castro Martínez, Ángel
Córdoba Gazolaz, Diego
Fefferman, Charles L.
Gancedo García, Francisco
López Fernández, María
Departamento: Universidad de Sevilla. Departamento de Análisis Matemático
Fecha: 2011-03-22
Publicado en: Proceedings of the National Academy of Sciences, 108 (12), 4754-4759.
Tipo de documento: Artículo
Resumen: We consider the evolution of an interface generated between two immiscible, incompressible, and irrotational fluids. Specifically we study the Muskat and water wave problems. We show that starting with a family of initial data given by (α, f0(α)), the interface reaches a regime in finite time in which is no longer a graph. Therefore there exists a time ∗t where the solution of the free boundary problem parameterized as s (α, f(α, t)) blows up:: k∂αfkL∞(t∗) = ∞. In particular, for the Muskat problem, this result allows us to reach an unstable regime, for which the Rayleigh-Taylor condition changes sign and the solution breaks down.
Cita: Castro Martínez, Á., Córdoba Gazolaz, D., Fefferman, C.L., Gancedo García, F. y López Fernández, M. (2011). Turning waves and breakdown for incompressible flows. Proceedings of the National Academy of Sciences, 108 (12), 4754-4759.
Tamaño: 164.0Kb
Formato: PDF

URI: http://hdl.handle.net/11441/45167

DOI: 10.1073/pnas.1101518108

Ver versión del editor

Mostrar el registro completo del ítem


Esta obra está bajo una Licencia Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internacional

Este registro aparece en las siguientes colecciones