Repositorio de producción científica de la Universidad de Sevilla

The nth root of a braid is unique up to conjugacy

 

Advanced Search
 
Opened Access The nth root of a braid is unique up to conjugacy
Cites

Show item statistics
Icon
Export to
Author: González-Meneses López, Juan
Department: Universidad de Sevilla. Departamento de álgebra
Date: 2003-11-01
Published in: Algebraic and Geometric Topology, 3, 1103-1118.
Document type: Article
Abstract: We prove a conjecture due to Makanin: if α and β are elements of the Artin braid group Bn such that α k = β k for some nonzero integer k, then α and β are conjugate. The proof involves the Nielsen-Thurston classification of braids.
Cite: González-Meneses López, J. (2003). The nth root of a braid is unique up to conjugacy. Algebraic and Geometric Topology, 3, 1103-1118.
Size: 258.5Kb
Format: PDF

URI: http://hdl.handle.net/11441/43115

DOI: http://dx.doi.org/10.2140/agt.2003.3.1103

This work is under a Creative Commons License: 
Attribution-NonCommercial-NoDerivatives 4.0 Internacional

This item appears in the following Collection(s)