Repositorio de producción científica de la Universidad de Sevilla

Dualité et comparaison sur les complexes de de Rham logarithmiques par rapport aux diviseurs libres

 

Advanced Search
 
Opened Access Dualité et comparaison sur les complexes de de Rham logarithmiques par rapport aux diviseurs libres
Cites

Show item statistics
Icon
Export to
Author: Calderón Moreno, Francisco Javier
Narváez Macarro, Luis
Department: Universidad de Sevilla. Departamento de álgebra
Date: 2005
Published in: Annales de l'Institut Fourier, 55 (1), 47-75.
Document type: Article
Abstract: Let X be a complex analytic manifold and D \subset X a free divisor. Integrable logarithmic connections along D can be seen as locally free {\cal O}_X-modules endowed with a (left) module structure over the ring of logarithmic differential operators {\cal D}_X(\log D). In this paper we study two related results: the relationship between the duals of any integrable logarithmic connection over the base rings {\cal D}_X and {\cal D}_X(\log D), and a differential criterion for the logarithmic comparison theorem. We also generalize a formula of Esnault-Viehweg in the normal crossing case for the Verdier dual of a logarithmic de Rham complex.
Cite: Calderón Moreno, F.J. y Narváez Macarro, L. (2005). Dualité et comparaison sur les complexes de de Rham logarithmiques par rapport aux diviseurs libres. Annales de l'Institut Fourier, 55 (1), 47-75.
Size: 616.8Kb
Format: PDF

URI: http://hdl.handle.net/11441/43078

DOI: 10.5802/aif.2089

See editor´s version

This work is under a Creative Commons License: 
Attribution-NonCommercial-NoDerivatives 4.0 Internacional

This item appears in the following Collection(s)