Repositorio de producción científica de la Universidad de Sevilla

Invariants and coinvariants of the symmetric group in noncommuting variables

Opened Access Invariants and coinvariants of the symmetric group in noncommuting variables

Citas

buscar en

Estadísticas
Icon
Exportar a
Autor: Bergeron, Nantel
Reutenauer, Christophe
Rosas Celis, Mercedes Helena
Zabrocki, Mike
Departamento: Universidad de Sevilla. Departamento de álgebra
Fecha: 2008
Publicado en: Canadian Journal of Mathematics, 60 (2), 266-296.
Tipo de documento: Artículo
Resumen: We introduce a natural Hopf algebra structure on the space of noncommutative symmetric functions. The bases for this algebra are indexed by set partitions. We show that there exists a natural inclusion of the Hopf algebra of noncommutative symmetric functions in this larger space. We also consider this algebra as a subspace of noncommutative polynomials and use it to understand the structure of the spaces of harmonics and coinvariants with respect to this collection of noncommutative polynomials and conclude two analogues of Chevalley’s theorem in the noncommutative setting.
Cita: Bergeron, N., Reutenauer, C., Rosas Celis, M.H. y Zabrocki, M. (2008). Invariants and coinvariants of the symmetric group in noncommuting variables. Canadian Journal of Mathematics, 60 (2), 266-296.
Tamaño: 349.1Kb
Formato: PDF

URI: http://hdl.handle.net/11441/43068

DOI: http://dx.doi.org/10.4153/CJM-2008-013-4

Mostrar el registro completo del ítem


Esta obra está bajo una Licencia Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internacional

Este registro aparece en las siguientes colecciones