Repositorio de producción científica de la Universidad de Sevilla

Constructing bispectral orthogonal polynomials from the classical discrete families of Charlier, Meixner and Krawtchouk

Opened Access Constructing bispectral orthogonal polynomials from the classical discrete families of Charlier, Meixner and Krawtchouk

Citas

buscar en

Estadísticas
Icon
Exportar a
Autor: Durán Guardeño, Antonio José
Domínguez de la Iglesia, Manuel
Departamento: Universidad de Sevilla. Departamento de Análisis Matemático
Fecha: 2015-02
Publicado en: Constructive Approximation, 41 (1), 49-91.
Tipo de documento: Artículo
Resumen: Given a sequence of polynomials (pn)n, an algebra of operators A acting in the linear space of polynomials and an operator Dp ∈ A with Dp(pn) = npn, we form a new sequence of polynomials (qn)n by considering a linear combination of m consecutive pn: qn = pn + Pm j=1 βn,jpn−j . Using the concept of D-operator, we determine the structure of the sequences βn,j , j = 1, . . . , m, in order that the polynomials (qn)n are common eigenfunctions of an operator in the algebra A. As an application, from the classical discrete families of Charlier, Meixner and Krawtchouk we construct orthogonal polynomials (qn)n which are also eigenfunctions of higher order difference operators.
Cita: Durán Guardeño, A.J. y Domínguez de la Iglesia, M. (2015). Constructing bispectral orthogonal polynomials from the classical discrete families of Charlier, Meixner and Krawtchouk. Constructive Approximation, 41 (1), 49-91.
Tamaño: 387.9Kb
Formato: PDF

URI: http://hdl.handle.net/11441/43015

DOI: http://dx.doi.org/10.1007/s00365-014-9251-5

Mostrar el registro completo del ítem


Esta obra está bajo una Licencia Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internacional

Este registro aparece en las siguientes colecciones