Repositorio de producción científica de la Universidad de Sevilla

The L(log L)e endpoint estimate for maximal singular integral operators

Opened Access The L(log L)e endpoint estimate for maximal singular integral operators

Citas

buscar en

Estadísticas
Icon
Exportar a
Autor: Hytönen, Tuomas
Pérez Moreno, Carlos
Departamento: Universidad de Sevilla. Departamento de Análisis Matemático
Fecha: 2015-08-01
Publicado en: Journal of Mathematical Analysis and Applications, 428 (1), 605-626.
Tipo de documento: Artículo
Resumen: We prove in this paper the following estimate for the maximal operator T ∗ associated to the singular integral operator T: kT ∗ fkL 1,∞ (w) . 1 ǫ Z Rn | f(x)| ML(log L) ǫ (w)(x) dx, w ≥ 0, 0 < ǫ ≤ 1. This follows from the sharp L p estimate kT ∗ fkLp (w) . p ′ ( 1 δ ) 1/p ′ kfk L p (ML(log L) p−1+δ (w)), 1 < p < ∞, w ≥ 0, 0 < δ ≤ 1. As as a consequence we deduce that kT ∗ fkL 1,∞ (w) . [w]A1 log(e + [w]A∞ ) Z Rn | f | w dx, extending the endpoint results obtained in [LOP] A. Lerner, S. Ombrosi and C. Pérez, A1 bounds for Calderón-Zygmund operators related to a problem of Muckenhoupt and Wheeden, Mathematical Research Letters (2009), 16, 149–156 and [HP] T. Hytönen and C. Pérez, Sharp weighted bounds involving A∞, Analysis and P.D.E. 6 (2013), 777–818. DOI 10.2140/apde.2013.6.777 to maximal singular integrals. Another consequence is a quantitative two weight bump estimate.
Cita: Hytönen, T. y Pérez Moreno, C. (2015). The L(log L)e endpoint estimate for maximal singular integral operators. Journal of Mathematical Analysis and Applications, 428 (1), 605-626.
Tamaño: 169.2Kb
Formato: PDF

URI: http://hdl.handle.net/11441/42999

DOI: http://dx.doi.org/10.1016/j.jmaa.2015.03.017

Mostrar el registro completo del ítem


Esta obra está bajo una Licencia Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internacional

Este registro aparece en las siguientes colecciones