Repositorio de producción científica de la Universidad de Sevilla

On the distribution (mod 1) of the normalized zeros of the Riemann Zeta-function

Opened Access On the distribution (mod 1) of the normalized zeros of the Riemann Zeta-function

Citas

buscar en

Estadísticas
Icon
Exportar a
Autor: Arias de Reyna Martínez, Juan
Departamento: Universidad de Sevilla. Departamento de Análisis Matemático
Fecha: 2015-08
Publicado en: Journal of Number Theory, 153, 37-53.
Tipo de documento: Artículo
Resumen: We consider the problem whether the ordinates of the non-trivial zeros of ζ(s) are uniformly distributed modulo the Gram points, or equivalently, if the normalized zeros (xn) are uniformly distributed modulo 1. Odlyzko conjectured this to be true. This is far from being proved, even assuming the Riemann hypothesis (RH, for short). Applying the Piatetski-Shapiro 11/12 Theorem we are able to show that, for 0 < κ < 6/5, the mean value 1 N P n≤N exp(2πiκxn) tends to zero. The case κ = 1 is especially interesting. In this case the Prime Number Theorem is sufficient to prove that the mean value is 0, but the rate of convergence is slower than for other values of κ. Also the case κ = 1 seems to contradict the behavior of the first two million zeros of ζ(s). We make an effort not to use the RH. So our Theorems are absolute. We also put forward the interesting question: will the uniform distribution of the normalized zeros be compatible with the GUE hypothesis? Let ρ = 1 2 + i...
[Ver más]
Cita: Arias de Reyna Martínez, J. (2015). On the distribution (mod 1) of the normalized zeros of the Riemann Zeta-function. Journal of Number Theory, 153, 37-53.
Tamaño: 415.0Kb
Formato: PDF

URI: http://hdl.handle.net/11441/42875

DOI: http://dx.doi.org/10.1016/j.jnt.2015.01.006

Mostrar el registro completo del ítem


Esta obra está bajo una Licencia Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internacional

Este registro aparece en las siguientes colecciones