Opened Access Clustering categories in support vector machines

Citas

buscar en

Estadísticas
Icon
Exportar a
Autor: Carrizosa Priego, Emilio José
Nogales Gómez, Amaya
Romero Morales, María Dolores
Departamento: Universidad de Sevilla. Departamento de Estadística e Investigación Operativa
Fecha: 2016-02
Publicado en: Omega
Tipo de documento: Artículo
Resumen: The support vector machine (SVM) is a state-of-the-art method in supervised classification. In this paper the Cluster Support Vector Machine (CLSVM) methodology is proposed with the aim to increase the sparsity of the SVM classifier in the presence of categorical features, leading to a gain in interpretability. The CLSVM methodology clusters categories and builds the SVM classifier in the clustered feature space. Four strategies for building the CLSVM classifier are presented based on solving: the SVM formulation in the original feature space, a quadratically constrained quadratic programming formulation, and a mixed integer quadratic programming formulation as well as its continuous relaxation. The computational study illustrates the performance of the CLSVM classifier using two clusters. In the tested datasets our methodology achieves comparable accuracy to that of the SVM in the original feature space, with a dramatic increase in sparsity.
Cita: Carrizosa Priego, E.J., Nogales Gómez, A. y Romero Morales, M.D. (2016). Clustering categories in support vector machines. Omega
Tamaño: 501.1Kb
Formato: PDF

URI: http://hdl.handle.net/11441/42778

DOI: 10.1016/j.omega.2016.01.008

Ver versión del editor

Mostrar el registro completo del ítem


Esta obra está bajo una Licencia Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internacional

Este registro aparece en las siguientes colecciones