Repositorio de producción científica de la Universidad de Sevilla

A Kernel for Time Series Classification: Application to Atmospheric Pollutants

 

Advanced Search
 
Opened Access A Kernel for Time Series Classification: Application to Atmospheric Pollutants
Cites

Show item statistics
Icon
Export to
Author: Arias, Marta
Troncoso Lora, Alicia
Riquelme Santos, José Cristóbal
Department: Universidad de Sevilla. Departamento de Lenguajes y Sistemas Informáticos
Date: 2013
Published in: Soft Computing Models in Industrial and Environmental Applications: 7th International Conference, SOCO’12, Ostrava, Czech Republic, September 5th-7th, 2012. Advances in Intelligent Systems and Computing, v.188
ISBN/ISSN: 978-3-642-32921-0
2194-5357
Document type: Chapter of Book
Abstract: In this paper a kernel for time-series data is presented. The main idea of the kernel is that it is designed to recognize as similar time series that may be slightly shifted with one another. Namely, it tries to focus on the shape of the time-series and ignores the fact that the series may not be perfectly aligned. The proposed kernel has been validated on several datasets based on the UCR time-series repository [1]. A comparison with the well-known Dynamic Time Warping (DTW) distance and Euclidean distance shows that the proposed kernel outperforms the Euclidean distance and is competitive with respect to the DTW distance while having a much lower computational cost.
Size: 213.3Kb
Format: PDF

URI: http://hdl.handle.net/11441/42469

DOI: http://dx.doi.org/10.1007/978-3-642-32922-7_43

This work is under a Creative Commons License: 
Attribution-NonCommercial-NoDerivatives 4.0 Internacional

This item appears in the following Collection(s)