Repositorio de producción científica de la Universidad de Sevilla

Conjugacy in Garside groups I: Cyclings, powers, and rigidity

Opened Access Conjugacy in Garside groups I: Cyclings, powers, and rigidity

Citas

buscar en

Estadísticas
Icon
Exportar a
Autor: Birman, Joan S.
Gebhardt, Volker
González-Meneses López, Juan
Departamento: Universidad de Sevilla. Departamento de álgebra
Fecha: 2007
Publicado en: Groups, Geometry, and Dynamics, 1 (3), 221-279.
Tipo de documento: Artículo
Resumen: In this paper a relation between iterated cyclings and iterated powers of elements in a Garside group is shown. This yields a characterization of elements in a Garside group having a rigid power, where ‘rigid’ means that the left normal form changes only in the obvious way under cycling and decycling. It is also shown that, given X in a Garside group, if some power X m is conjugate to a rigid element, then m can be bounded above by ||∆||3. In the particular case of braid groups {Bn, n ∈ N}, this implies that a pseudo-Anosov braid has a small power whose ultra summit set consists of rigid elements. This solves one of the problems in the way of a polynomial solution to the conjugacy decision problem (CDP) and the conjugacy search problem (CSP) in braid groups. In addition to proving the rigidity theorem, it will be shown how this paper fits into the authors’ program for finding a polynomial algorithm to the CDP/CSP, and what remains to be done.
Cita: Birman, J.S., Gebhardt, V. y González-Meneses López, J. (2007). Conjugacy in Garside groups I: cyclings, powers, and rigidity. Groups, Geometry, and Dynamics, 1 (3), 221-279.
Tamaño: 521.3Kb
Formato: PDF

URI: http://hdl.handle.net/11441/42271

DOI: http://dx.doi.org/10.4171/GGD/12

Mostrar el registro completo del ítem


Esta obra está bajo una Licencia Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internacional

Este registro aparece en las siguientes colecciones