Opened Access On irregular binomial D-modules

Show item statistics
Export to
Author: Fernández Fernández, María Cruz
Castro Jiménez, Francisco Jesús
Department: Universidad de Sevilla. Departamento de álgebra
Date: 2012-12
Published in: Mathematische Zeitschrift, 272 (3), 1321-1337.
Document type: Article
Abstract: We prove that a holonomic binomial D–module MA(I, β) is regular if and only if certain associated primes of I determined by the parameter vector β ∈ Cd are homogeneous. We further describe the slopes of MA(I, β) along a coordinate subspace in terms of the known slopes of some related hypergeometric D–modules that also depend on β. When the parameter β is generic, we also compute the dimension of the generic stalk of the irregularity of MA(I, β) along a coordinate hyperplane and provide some remarks about the construction of its Gevrey solutions.
Cite: Fernández Fernández, M.C. y Castro Jiménez, F.J. (2012). On irregular binomial D-modules. Mathematische Zeitschrift, 272 (3), 1321-1337.
Size: 224.5Kb
Format: PDF



This work is under a Creative Commons License: 
Attribution-NonCommercial-NoDerivatives 4.0 Internacional

This item appears in the following Collection(s)