Show simple item record

dc.creator Rojas León, Antonio es
dc.date.accessioned 2016-06-08T06:54:58Z
dc.date.available 2016-06-08T06:54:58Z
dc.date.issued 2007-03
dc.identifier.citation Rojas León, A. (2007). Purity of exponential sums on An, II. Journal für die reine und angewandte Mathematik, 603, 35-53.
dc.identifier.issn 0075-4102 es
dc.identifier.issn 1435-5345 es
dc.identifier.uri http://hdl.handle.net/11441/42020
dc.description.abstract We give a purity result for exponential sums of the type P x∈kn ψ(f(x)), where k is a finite field of characteristic p, ψ : k → C* is a non-trivial additive character and f ∈ k[x1, . . . , xn] is a polynomial whose highest degree homogeneous form splits as a product of factors defining a divisor with normal crossings in P n−1. es
dc.description.sponsorship Ministerio de Educación y Ciencia es
dc.description.sponsorship Fondo Europeo de Desarrollo Regional es
dc.format application/pdf es
dc.language.iso eng es
dc.publisher De Gruyer es
dc.relation.ispartof Journal für die reine und angewandte Mathematik, 603, 35-53.
dc.rights Attribution-NonCommercial-NoDerivatives 4.0 Internacional *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/4.0/ *
dc.title Purity of exponential sums on An, II es
dc.type info:eu-repo/semantics/article es
dc.type.version info:eu-repo/semantics/publishedVersion es
dc.rights.accessrights info:eu-repo/semantics/openAccess es
dc.contributor.affiliation Universidad de Sevilla. Departamento de álgebra es
dc.relation.projectID MTM2004-07203-C02-01 es
dc.identifier.doi http://dx.doi.org/10.1515/CRELLE.2007.011 es
idus.format.extent 20 p. es
dc.journaltitle Journal für die reine und angewandte Mathematik es
dc.publication.volumen 603 es
dc.publication.initialPage 35 es
dc.publication.endPage 53 es
dc.relation.publicationplace Berlin es
dc.identifier.idus https://idus.us.es/xmlui/handle/11441/42020
dc.contributor.funder Ministerio de Educación y Ciencia (MEC). España
dc.contributor.funder European Commission (EC). Fondo Europeo de Desarrollo Regional (FEDER)
Size: 271.4Kb
Format: PDF

This item appears in the following Collection(s)

Show simple item record