Repositorio de producción científica de la Universidad de Sevilla

A geometrical coefficient implying the fixed point property and stability results

Opened Access A geometrical coefficient implying the fixed point property and stability results
Estadísticas
Icon
Exportar a
Autor: Domínguez Benavides, Tomás
Departamento: Universidad de Sevilla. Departamento de Análisis Matemático
Fecha: 1996
Publicado en: Houston Journal of Mathematics, 22 (4), 835-849.
Tipo de documento: Artículo
Resumen: In this paper we define a new geometric constant M(X) in Banach spaces such that X has the fixed point property for nonexpansive mappings if M(X) > 1. We prove that M(X) •_ WCS(X), the inequality being strict in many important classes of Banach spaces and we obtain lower bounds for M(X) based upon either the modulus of near uniform smoothness or the modulus of the Opia] property of the conjugated space. We show that this new constant gives us stability results for the fixed point property with respect to œp-spaces which improve all previous results.
Cita: Domínguez Benavides, T. (1996). A geometrical coefficient implying the fixed point property and stability results. Houston Journal of Mathematics, 22 (4), 835-849.
Tamaño: 614.0Kb
Formato: PDF

URI: http://hdl.handle.net/11441/41801

Mostrar el registro completo del ítem


Esta obra está bajo una Licencia Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internacional

Este registro aparece en las siguientes colecciones