Repositorio de producción científica de la Universidad de Sevilla

Structural and recurrence relations for hypergeometric-type functions by Nikiforov-Uvarov method

Opened Access Structural and recurrence relations for hypergeometric-type functions by Nikiforov-Uvarov method
Estadísticas
Icon
Exportar a
Autor: Santos Cardoso, José Luis dos
Fernandes, Cibele M.
Álvarez Nodarse, Renato
Departamento: Universidad de Sevilla. Departamento de Análisis Matemático
Fecha: 2009
Publicado en: Electronic transactions on numerical analysis, 35, 17-39.
Tipo de documento: Artículo
Resumen: The functions of hypergeometric-type are the solutions y = yν(z) of the differential equation σ(z)y ′′ + τ(z)y ′ + λy = 0, where σ and τ are polynomials of degrees not higher than 2 and 1, respectively, and λ is a constant. Here we consider a class of functions of hypergeometric type: those that satisfy the condition λ + ντ′ + 1 2 ν(ν − 1)σ ′′ = 0, where ν is an arbitrary complex (fixed) number. We also assume that the coefficients of the polynomials σ and τ do not depend on ν. To this class of functions belong Gauss, Kummer, and Hermite functions, and also the classical orthogonal polynomials. In this work, using the constructive approach introduced by Nikiforov and Uvarov, several structural properties of the hypergeometric-type functions y = yν (z) are obtained. Applications to hypergeometric functions and classical orthogonal polynomials are also given.
Cita: Santos Cardoso, J.L.d., Fernandes, C.M. y Álvarez Nodarse, R. (2009). Structural and recurrence relations for hypergeometric-type functions by Nikiforov-Uvarov method. Electronic transactions on numerical analysis, 35, 17-39.
Tamaño: 273.4Kb
Formato: PDF

URI: http://hdl.handle.net/11441/41720

Mostrar el registro completo del ítem


Esta obra está bajo una Licencia Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internacional

Este registro aparece en las siguientes colecciones