Autor: | Rosas Celis, Mercedes Helena |
Departamento: | Universidad de Sevilla. Departamento de álgebra |
Fecha: | 2002-03-06 |
Publicado en: | Discrete mathematics, 246 (1-3), 285-293. |
Tipo de documento: | Artículo |
Resumen: | A MacMahon symmetric function is a formal power series in a finite number of alphabets that is invariant under the diagonal action of the symmetric group. We use a combinatorial construction of the different bases of the vector space of MacMahon symmetric functions found by the author to obtain their image under the principal specialization: the powers, rising and falling factorials. Then, we compute the connection coefficients of the different polynomial bases in a combinatorial way. |
Cita: | Rosas Celis, M.H. (2002). Specializations of MacMahon symmetric functions and the polynomial algebra. Discrete mathematics, 246 (1-3), 285-293. |
URI: http://hdl.handle.net/11441/41678
DOI: 10.1016/S0012-365X(01)00263-1
Mostrar el registro completo del ítem