Repositorio de producción científica de la Universidad de Sevilla

Specializations of MacMahon symmetric functions and the polynomial algebra

Opened Access Specializations of MacMahon symmetric functions and the polynomial algebra

Citas

buscar en

Estadísticas
Icon
Exportar a
Autor: Rosas Celis, Mercedes Helena
Departamento: Universidad de Sevilla. Departamento de álgebra
Fecha: 2002-03-06
Publicado en: Discrete mathematics, 246 (1-3), 285-293.
Tipo de documento: Artículo
Resumen: A MacMahon symmetric function is a formal power series in a finite number of alphabets that is invariant under the diagonal action of the symmetric group. We use a combinatorial construction of the different bases of the vector space of MacMahon symmetric functions found by the author to obtain their image under the principal specialization: the powers, rising and falling factorials. Then, we compute the connection coefficients of the different polynomial bases in a combinatorial way.
Cita: Rosas Celis, M.H. (2002). Specializations of MacMahon symmetric functions and the polynomial algebra. Discrete mathematics, 246 (1-3), 285-293.
Tamaño: 5.434Mb
Formato: PDF

URI: http://hdl.handle.net/11441/41678

DOI: http://dx.doi.org/10.1016/S0012-365X(01)00263-1

Mostrar el registro completo del ítem


Esta obra está bajo una Licencia Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internacional

Este registro aparece en las siguientes colecciones