Repositorio de producción científica de la Universidad de Sevilla

LBF: A Labeled-Based Forecasting Algorithm and Its Application to Electricity Price Time Series

Opened Access LBF: A Labeled-Based Forecasting Algorithm and Its Application to Electricity Price Time Series

Citas

buscar en

Estadísticas
Icon
Exportar a
Autor: Martínez Álvarez, Francisco
Troncoso Lora, Alicia
Riquelme Santos, José Cristóbal
Aguilar Ruiz, Jesús Salvador
Departamento: Universidad de Sevilla. Departamento de Lenguajes y Sistemas Informáticos
Fecha: 2008
Publicado en: 2008 Eighth IEEE International Conference on Data Mining, Dec. 2008, pp. 453 - 461
Tipo de documento: Capítulo de Libro
Resumen: A new approach is presented in this work with the aim of predicting time series behaviors. A previous labeling of the samples is obtained utilizing clustering techniques and the forecasting is applied using the information provided by the clustering. Thus, the whole data set is discretized with the labels assigned to each data point and the main novelty is that only these labels are used to predict the future behavior of the time series, avoiding using the real values of the time series until the process ends. The results returned by the algorithm, however, are not labels but the nominal value of the point that is required to be predicted. The algorithm based on labeled (LBF) has been tested in several energy-related time series and a notable improvement in the prediction has been achieved.
Tamaño: 424.7Kb
Formato: PDF

URI: http://hdl.handle.net/11441/40507

DOI: http://dx.doi.org/10.1109/ICDM.2008.129

Mostrar el registro completo del ítem


Esta obra está bajo una Licencia Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internacional

Este registro aparece en las siguientes colecciones