Autor: |
Ferrer Troyano, Francisco J.
Aguilar Ruiz, Jesús Salvador Riquelme Santos, José Cristóbal |
Departamento: | Universidad de Sevilla. Departamento de Lenguajes y Sistemas Informáticos |
Fecha: | 2004 |
Publicado en: | SAC '04 Proceedings of the 2004 ACM symposium on Applied computing, pp. 649-653 (2004) |
Tipo de documento: | Capítulo de Libro |
Resumen: | This paper presents a scalable learning algorithm to classify numerical, low dimensionality, high-cardinality, time-changing data streams. Our approach, named SCALLOP, provides a set of decision rules on demand which improves its simplicity and helpfulness for the user. SCALLOP updates the knowledge model every time a new example is read, adding interesting rules and removing out-of-date rules. As the model is dynamic, it maintains the tendency of data. Experimental results with synthetic data streams show a good performance with respect to running time, accuracy and simplicity of the model. |
URI: http://hdl.handle.net/11441/39691
DOI: http://dx.doi.org/10.1145/967900.968036
Mostrar el registro completo del ítem