Repositorio de producción científica de la Universidad de Sevilla

Learning under hardware restrictions in CMOS fuzzy controllers able to extract rules from examples

Opened Access Learning under hardware restrictions in CMOS fuzzy controllers able to extract rules from examples
Estadísticas
Icon
Exportar a
Autor: Vidal-Verdú, F.
Navas, R.
Rodríguez Vázquez, Ángel Benito
Departamento: Universidad de Sevilla. Departamento de Electrónica y Electromagnetismo
Fecha: 1996
Publicado en: Mathware & soft computing, 3, (3), 435-446
Tipo de documento: Artículo
Resumen: Fuzzy controllers are able to incorporate knowledge expressed in if-then rules. These rules are given by experts or skilful operators. Problems arise when there are no experts or/and rules are not easy to find. Author's proposal consists on an analog fuzzy controller which accepts structured language as well as input/output data pairs, thus rules can be extracted or tuned from human or software controller operation. Learning from data pairs has to be carried out under hardware restrictions in linearity, range and resolution. In this paper, modelling of building blocks arranged in a neuro-fuzzy architecture is made and issues related to on-chip learning are discussed. Computer simulations show that learning is possible for resolutions up to 6 bits, affordable with the cheapest VLSI technologies.
Tamaño: 194.0Kb
Formato: PDF

URI: http://hdl.handle.net/11441/32479

Ver versión del editor

Mostrar el registro completo del ítem


Esta obra está bajo una Licencia Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internacional

Este registro aparece en las siguientes colecciones