Opened Access Homological computation using spanning trees


buscar en

Exportar a
Autor: Molina Abril, Helena
Real Jurado, Pedro
Departamento: Universidad de Sevilla. Departamento de Matemática Aplicada I (ETSII)
Fecha: 2009
Publicado en: Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications, Lecture Notes in Computer Science, Vol. 5856 p. 272-278
Tipo de documento: Capítulo de Libro
Resumen: We introduce here a new F2 homology computation algorithm based on a generalization of the spanning tree technique on a finite 3-dimensional cell complex K embedded in ℝ3. We demonstrate that the complexity of this algorithm is linear in the number of cells. In fact, this process computes an algebraic map φ over K, called homology gradient vector field (HGVF), from which it is possible to infer in a straightforward manner homological information like Euler characteristic, relative homology groups, representative cycles for homology generators, topological skeletons, Reeb graphs, cohomology algebra, higher (co)homology operations, etc. This process can be generalized to others coefficients, including the integers, and to higher dimension.
Tamaño: 191.4Kb
Formato: PDF



Mostrar el registro completo del ítem

Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional

Este registro aparece en las siguientes colecciones