Repositorio de producción científica de la Universidad de Sevilla

Time-periodic solutions for a generalized Boussinesq model with Neumann boundary conditions for temperature

 

Advanced Search
 
Opened Access Time-periodic solutions for a generalized Boussinesq model with Neumann boundary conditions for temperature
Cites

Show item statistics
Icon
Export to
Author: Climent Ezquerra, María Blanca
Guillén González, Francisco Manuel
Rojas Medar, Marko Antonio
Department: Universidad de Sevilla. Departamento de Ecuaciones Diferenciales y Análisis Numérico
Date: 2007-09
Published in: Proceedings of the royal society. A: Mathematical, Physical & Engineering Science, 463, 2153–2164
ISBN/ISSN: 1364-5021
Document type: Presentation
Abstract: The aim of this work is to prove the existence of regular time-periodic solutions for a generalized Boussinesq model (with nonlinear diffusion for the equations of velocity and temperature). The main idea is to obtain higher regularity (of H3 type) for temperature than for velocity (of H2 type), using specifically the Neumann boundary condition for temperature. In fact, the case of Dirichlet condition for temperature remains as an open problem.
Size: 149.2Kb
Format: PDF

URI: http://hdl.handle.net/11441/28357

DOI: http://dx.doi.org/10.1098/rspa.2007.1867

See editor´s version

This work is under a Creative Commons License: 

This item appears in the following Collection(s)