Repositorio de producción científica de la Universidad de Sevilla

Comparison of theoretical complexities of two methods for computing annihilating ideals of polynomials

 

Advanced Search
 
Opened Access Comparison of theoretical complexities of two methods for computing annihilating ideals of polynomials
Cites

Show item statistics
Icon
Export to
Author: Gago Vargas, Manuel Jesús
Hartillo Hermoso, Isabel
Ucha Enríquez, José María
Department: Universidad de Sevilla. Departamento de Álgebra
Date: 2005
Published in: Journal of Symbolic Computation, 40(3), 1076-1086
Document type: Article
Abstract: Let f1, . . . , fp be polynomials in C[x1, . . . , xn] and let D = Dn be the n-th Weyl algebra. We provide upper bounds for the complexity of computing the annihilating ideal of f s = f s1 1 · · · f sp p in D[s] = D[s1, . . . , sp]. These bounds provide an initial explanation on the differences between the running times of the two methods known to obtain the so-called BernsteinSato ideals.
Size: 324.9Kb
Format: PDF

URI: http://hdl.handle.net/11441/23600

DOI: 10.1016/j.jsc.2005.05.004

See editor´s version
See editor´s version

This work is under a Creative Commons License: 
Atribución-NoComercial-CompartirIgual 4.0 Internacional

This item appears in the following Collection(s)