Autor: |
Sihong, Shao
Quintero, Niurka R. Mertens, Franz G. Khare, Avinash Saxena, Avadh |
Departamento: | Universidad de Sevilla. Departamento de Física Aplicada I Instituto de Matemáticas de la Universidad de Sevilla (Antonio de Castro Brzezicki) |
Fecha: | 2014 |
Publicado en: | Physical Review E, 2014, 90 (3), 032915: 1-15 |
Tipo de documento: | Artículo |
Resumen: |
We consider the nonlinear Dirac equation in 1 + 1 dimension with scalar-scalar self interaction g2κ+1(Ψ¯¯¯Ψ)κ+1 and with mass m. Using the exact analytic form for rest frame solitary waves of the form Ψ(x,t)=ψ(x)e−iωt for arbitrary κ, we discuss the validity of various approaches to understanding stability that were successful for the nonlinear Schrödinger equation. In particular we study the validity of a version of Derrick's theorem and the criterion of Bogolubsky as well as the Vakhitov-Kolokolov criterion, and find that these criteria yield inconsistent results. Therefore, we study the stability by numerical simulations using a recently developed fourth-order operator splitting integration method. For different ranges of κ we map out the stability regimes in ω. We find that all stable nonlinear Dirac solitary waves have a one-hump profile, but not all one-hump waves are stable, while all waves with two humps are unstable. We also find that the time tc, it takes for the instability... [Ver más] |
URI: http://hdl.handle.net/11441/23510
DOI: 10.1103/PhysRevE.90.032915
Ver versión del editor
Ver versión del editor
Ver versión del editor
Mostrar el registro completo del ítem